Project

Newtownmoynaghy SHD

Report Title

Infrastructure Design Report

Clien

McGarrell Reilly Homes

December 2019

Job Title:	Newtownmoynaghty SHD					
Job Number:	190009					
Report Reference:	190009-rep-001					
Author:	Jack Butler					
Approved by:	Brendan Manning					
Date:	December 2019					
Distribution:	Planning					
	Client					
	Architect					
	Planning Consultant					
	File					
DBFL Consulting Engineers						

DBFL Consulting Engineers Ormond House Upper Ormond Quay Dublin 7

Tel01 4004000Fax01 4004050Emailinfo@dbfl.ieWebwww.dbfl.ie

Revision	Issue Date	Description	Prepared	Reviewed	Approved
	30/04/2019	Draft	JLB	BCM	DJR
	16/10/2019	Draft 2	JLB	BCM	DJR
	19/11/2019	Draft 3	JLB	BCM	DJR
	13/12/2019	Final	JLB	BCM	DJR

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1	Background1
1.2	Objectives1
1.3	Site Location1
1.4	Proposed Development2
1.5	Flood Risk
2.0	ACCESS AND STREETS
2.1	Overall Street and Access Layout
2.2	Street Layout Design
2.3	Pavement Design Standards 4
2.4	Traffic and Transportation4
2.5	Vehicle Tracking4
3.0	SURFACE WATER DRAINAGE5
3.1	Existing Surface Water5
3.2	General Design
3.3	SUDS
3.4	Sustainable Urban Drainage Systems Proposals7
3.5	Attenuation Calcs 12
3.6	Interception Volume 13
3.7	Design Standards13
3.8	Climate Change15
3.9	Pluvial Flooding Provision15
4.0	FOUL DRAINAGE16
4.1	Existing Foul Drainage
4.2	Design Strategy 16
4.3	Design Calculation 17
5.0	WATER SUPPLY AND DISTRIBUTION18
5.1	Existing Water Supply 18
5.2	Development Water Main Layout18
5.3	Water Main Standards and Details18
5.4	Water Demand and Conservation 19

Appendices

- Appendix A. Irish Suds Report
- Appendix B. Attenuation Calculations
- Appendix C. Confirmation of Feasibility from Irish Water
- Appendix D. Surface Water Permissible Outflow
- Appendix E. Surface Water Network Calculations
- Appendix F. Foul Sewer Network Calculations
- Appendix G. Ground Investigation Information
- Appendix H. Statement of Design Acceptance

1.0 INTRODUCTION

1.1 Background

DBFL were commissioned to undertake an infrastructure design report to accompany a planning submission for a residential development at Millerstown, Newtownmoyaghy, Co. Meath.

The application comprises 575 new residential units, creche, GAA clubhouse, street layout, access and associated site services on a greenfield site. The proposed development is served by enabling infrastructure approved by Meath County Council under Reg Ref DA/100614 and ABP Ref PL17.238370. These enabling infrastructure works are now substantially complete.

1.2 Objectives

This report aims to consider the proposed development's main infrastructure elements, including the following;

- Surface water strategy and servicing.
- Foul sewer strategy and servicing.
- Water supply and servicing.
- Street Layout/Site access.

1.3 Site Location

The site, of approximately 24.77 Ha, is located at Millerstown, Newtownmoyaghy, Kilcock, Co. Meath. It is situated on the Meath/Kildare border, approximately 6km northwest of Maynooth along the R148. It is currently a greenfield site.

The subject site is located to the north of the Royal Canal and the Rye Water River. The R148 runs in the same direction and is located next to the Royal Canal. The Moyglare Road is located to the north of the site and the R125 is located to the west of the site. The site is primarily bounded by farmland, residential dwellings and the ongoing Millerstown Phase 1 development.

Figure 1.1: Site Location

1.4 Proposed Development

It is proposed to construct 575 new residential units on a greenfield site. Full details of the scheme layout are included on the architectural plans, elevations, sections etc.

The development will also comprise associated infrastructure including access roads, new streets, roads, footpaths, driveways, a GAA clubhouse and associated site services.

1.5 Flood Risk

A separate Site-Specific Flood Risk Assessment is included within the application documentation.

2.0 ACCESS AND STREETS

2.1 Overall Street and Access Layout

The proposed development will be accessed via the Link Street that is currently being constructed as part of the Millerstown Phase 1 development under MCC REF RA 150205 and ABP Ref PL 17.246141. The Link Street is located along the southern and western boundaries of the subject site and provides a link between the R125 and the R148 Maynooth Road. The Link Street forms part of the overall spine route between the R148 (Maynooth Road) and the R158 (Trim Road) through the overall Kilcock Environs Lands in Co. Meath. The link road serves the overall Kilcock Environs Lands, including the proposed school site. Construction of the link road is anticipated to be finished by Q1 2020. The section of the Link Street accessing Millerstown Phase 1 is already complete including the new roundabout which facilitates the R148 Maynooth Road.

Within the development a clear hierarchy of streets in accordance with the principles of DMURS has been provided. Refer to DBFL drawings 190009-DBFL-XX-XX-DR-C-2000 to 2004 with the hierarchy clearly defined between link streets, primary local access, secondary local access and homezones. The development layout has been designed, based on the recommendations of DMURS, to provide 'self-regulating' streets. A design speed limits have been applied throughout the development as per Design Manual for Urban Roads and Streets (DMURS). A statement of consistency with DMURS is also provided with this application.

2.2 Street Layout Design

The proposed development's street layout and hierarchy is shown on drawings 190009-DBFL-XX-XX-DR-C-2000 to 2004. The standard street cross-sections are detailed on drawing 190009-DBFL-XX-XX-DR-C-2010 and comprise the following;

- Primary Local Access typically 5.5m wide carriageway with 2.0m footpaths.
- Secondary Local Access typically 5.0 5.5m wide carriageway with 2.0m footpaths.
- Homeszone Typically 5m wide carriageway with 2m footpaths.

The development layout can also facilitate an element of on street parking for visitors within the 5.5m wide carriageways. Typical street cross sections also include 2.0m wide footpaths. Maximum road corner radii of 4.5m are provided at junctions to the Link Street and junction radii of between 1-3m within the site are provided as per DMURS.

2.3 Pavement Design Standards

Drawings 190009-DBFL-XX-XX-DR-C-2010 to 2012 details the proposed road construction thicknesses based on an existing ground minimum design CBR of 3%. Actual CBRs and ground conditions will be confirmed by site investigations prior to construction.

2.4 Traffic and Transportation

Traffic and Transportation are discussed separately in DBFL report "Traffic and Transportation Assessment".

2.5 Vehicle Tracking

The proposed development has been tracked to show that the development circulation layout will accommodate a large refuse vehicle with a turning head provided to the rear of the site, refer to DBFL drawings 190009-DBFL-XX-XX-DR-C-2000 and 2004.

3.0 SURFACE WATER DRAINAGE

3.1 Existing Surface Water

The topography of the site generally slopes from North to South. Surface water drainage within the vicinity of the proposed development comprises the following;

- Rye Water River which forms the southern site boundary and flows in a southeasterly direction parallel to the R148 before turning east towards Leixlip, where it discharges to the River Liffey.
- Upper Ditch which traverses the centre of the subject site. Although generally dry it falls in an easterly direction and eventually merges with the Rye Water to the east of the site.
- Existing surface water drainage constructed/under construction in the Link Street as part of Millerstown Phase 1.

3.2 General Design

The proposed surface water drainage system will collect storm-water run-off from the proposed residential development via a traditional pipe-work and manhole system laid within the proposed street network. Run-off from impermeable streets will be collected by gullies roofs and driveways will be collected via individual connections. Sustainable Urban Drainage Systems (SUDS) will be incorporated to reduce run-off volumes and improve run-off water quality. Based on the sites underlying ground conditions, groundwater recharge will be facilitated in the design of the surface water / SUDS systems for the subject site.

3.2.1 Compliance with Surface Water Policy

Surface water management for the proposed development is designed to comply with the Greater Dublin Strategic Drainage Study (GDSDS) policies and guidelines and the requirements of Meath County Council. The GDSDS guidelines require the following main 4 main criteria to be provided by the development's surface water design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage and treatment of run-off within the SUDS features e.g. permeable paving, swales, detention basins, oil separators, and on-line infiltration basin.
- Criterion 2: River Regime Protection satisfied by attenuating run-off with flow control device prior to discharge to the Rye Water River
- Criterion 3: Level of Service (flooding) for the site satisfied by the Site being outside the 1000 year coastal and fluvial flood levels. Pluvial flood risk addressed by development designed to accommodate a 100-year storm as per

GDSDS. Planned flood routing for storms greater than 100-year level considered in design and development run-off contained within site.

 Criterion 4: River flood protection – attenuation and long-term storage provided within the SUDS features e.g. permeable paving construction and on-line infiltration basin attenuation systems etc.

3.2.2 Surface Water Design

Run-off from individual houses is designed to discharge to the surface water network. In accordance with SUDS principal's in curtilage SUDS is provided in the form of permeable paving for all driveways facilitating attenuation, storage and infiltration potential for run-off from these areas. A stone storage reservoir is provided within the build up for each driveway which housing roof drainage discharges to. The stone reservoir includes an overflow outlet which is connected to the surface water network. Typical details for in curtilage SUDS features are shown on DBFL drawings 190009-DBFL-XX-XX-DR-C-3010 to 3015.

Surface water discharge rates from the site's main collection network will be controlled by Hydrobrake flow control devices downstream of the attenuation storage areas comprising open infiltration basins. The infiltration basins will provide storage for a 100year storm in accordance with GDSDS with a 20% allowance for climate change. These attenuation systems will serve the whole of the development; layouts for same are shown on drawings 190009- DBFL-XX-XX-DR-C-3000 to 3003.

3.3 SUDS

In accordance with the GDSDS it is proposed to use Sustainable Urban Drainage systems (SUDS) for managing storm-water for the proposed development. The aim of the SUDS strategy for the site will be to;

- Attenuate storm-water runoff.
- Reduce storm-water runoff.
- Reduce pollution impact.
- Replicate the natural characteristics of rainfall runoff for the site.

The proposed drainage/SUDS layouts are detailed on drawings 190009-DBFL-XX-XX-DR-C-3000 to 3003.

An assessment of the potential SUDS that could be incorporated within the site was conducted using the <u>https://uksuds.worldsecuresystems.com/</u> website and the SUDS Manual, refer to evaluation report in Appendix A. Since the proposed development drainage will be constructed to a taking in charge standard, the range of SUDS features available are restricted but include the following;

- 1. General extents of impermeable areas reduced where possible.
- 2. Permeable, self-draining areas incorporated in landscaped areas.
- 3. All off street parking to be constructed using permeable paving. Run-off from these permeable areas is allowed to infiltrate to the sub-soil and provide attenuation, storage and soakage for run-off generated by adjacent impermeable surfaces.
- 4. Attenuation storage systems provided using on-line infiltration basins which promote infiltration to ground and to improve water quality.

Final petrol interceptors / downstream defenders to be provided upstream of the final outfall points to the Rye Water and Upper Ditch. Headwalls and non-return valves will be provided at discharge points to the Rye River and Upper ditch.

3.4 Sustainable Urban Drainage Systems Proposals

In line with the recommendations of the GDSDS, Greater Dublin Regional Code of Practice for Drainage Works and the SuDS manual, it is proposed to provide a multistage attenuation system aimed at providing storm storage facilities and enhancing the quality of surface water runoff from the development. This would be achieved by intercepting rainfall and other runoff, treating the water by filtration through natural materials and conveying this water to storage facilities also having the capacity for secondary treatment. The SUDS approach seeks to mirror the greenfield run-off levels of existing catchments by restricting and maintaining the allowable surface water outflow from all new developments.

A 'SuDS Treatment Train' for the proposed development is shown below. By providing at least two separate treatment stages, this plan is in accordance with Table 3.3 of the SuDS manual.

Figure 3.1: SuDS Treatment Train

A breakdown of the various sustainable drainage systems is provided below:

3.4.1 Permeable Paving

It is proposed to provide permeable paving on driveways within the proposed development. Upon contact with the paved upper layer, surface water runoff infiltrates to an underlying stone reservoir. This process of interception and filtration is capable of removing pollutants before the surface water drains directly downwards or discharges to a nearby sewer network. The most significant benefit of permeable paving is its capacity to control both the quantity and quality of surface water runoff. It should be noted that manufacturers suggest a dissipation rate through paving joints of 2000 l/s/Ha can be achieved.

3.4.2 Stone Storage Under Permeable Driveways

In order to maximise groundwater recharge and to facilitate a reduction in the volume of runoff generated by the development surface water collected from the roof area of each property would drain to a stone storage layer located below the property driveway and would also be utilised for discharge to ground. The mobilisation of the storage layer within each property affords an additional opportunity for groundwater recharge to occur, particularly in times of heavy rainfall, and would contribute to a reduction in the overall volume of surface water runoff. The surface water drainage network within the proposed development has been designed allow for 50% run off from each driveway (Run off co-efficient of 0.5). A runoff co-efficient of 1.0 (100%) has been assumed for all roof areas even though they will be partially attenuated within the stone reservoir under each driveway. This would be considered a conservative approach and ultimately lead to an effective and high-performance drainage system.

Typical 'in-curtilage' SuDS details are shown on drawings 190009-DBFL-XX-XX-DR-C-3010 to 3015.

3.4.3 Infiltration / Detention Basin

In addition to being an effective storage facility, permeable infiltration basins have the ability to facilitate both water treatment and groundwater recharge. Detention / Infiltration basins can also be aesthetically pleasing, encourage biodiversity and are unobtrusive and relatively inexpensive.

To facilitate maintenance bank slopes on the infiltration / detention basin have been set at maximum of 1:3. The infiltration / detention basin would generally be dry however during extreme rainfall events the basins would fill to the 100-year (plus climate change) design water depth. This flood event water level would quickly recede as the storm / rainfall event abates. Infiltration basins facilitate both groundwater recharge and evapotranspiration and provide a second treatment stage for runoff as well as providing the majority of the overall attenuation storage for the site.

For rainfall events in excess of the 100-year (plus climate change) storm water would overtop the bank of the basin and flow overland towards the Rye Water River. In compliance terms, the 100-year, plus 20% for climate change flood, event is retained on the development site as per the requirements of the GDSDS.

An example of a similar infiltration basin can be seen in the adjacent Phase 1 in Millerstown. The basin has matured and is used by residents as an active landscape.

3.4.4 <u>Swales</u>

Shallow swales are proposed on the edge of the street which adjoins the main open spaces within the site. These shallow swales would generally be dry overland flow routes with slide slopes of 1:4. During extreme rainfall events the swale could potentially fill to a depth of 200mm. The water level would quickly recede as the storm abates. Runoff from the adjacent section of street would flow into the swales facilitating both groundwater recharge and evapotranspiration. Swales can provide interception and treatment storage for runoff in addition to providing a portion of the overall attenuation storage.

Swales would be connected at identified points to the surface water sewer network serving the site, using 'Brio' manhole covers with connecting pipework.

While the extent and quality of the SuDS features utilised within sites surface water catchment generally negates the need for an interceptor/separator devices at the outfall point, it is proposed to provide 'Downstream Defenders' downstream of the proposed flow control 'Hydro-Brake' manhole as show on drawing 190009-DBFL-XX-XX-DR-C-3012. These will provide a level of treatment before discharge to the Rye Water and Upper Ditch.

3.5 Attenuation Calcs

Run-off from the proposed development will be limited / attenuated to existing greenfield run-off rates as per the Millerstown Phase 1 using vortex flow control devices (Hydrobrake or equivalent) limiting discharge to 33.9 l/s for the entire site in accordance with the GDSDS (Total area 15.2 Ha). Please refer to allowable site discharge calculations in Appendix D for the north and south site. The resultant design attenuation volumes, discharge limits, types of storage and storage volumes for each area are detailed in Table 3.1 below.

Catchment	Storage System Type	Discharge Limit (l/s)	100 Year Storage Volume
1 (North Site)	Infiltration Basin	20.1 l/s	1950m ³
2 (South Site)	Infiltration Basin	13.8 l/s	1570m ³
Total		33.9 l/s	3522m ³

Table 3.1 – Surface Water Attenuation Storage and Discharge Limits

Attenuation volumes have been designed using Microdrainage Windes analysis software taking account of design invert levels, ground levels and depth and type of system. The attenuation systems are designed to provide a total of 3520 m³ of storage; refer to design run-off calculations in Appendix D.

Appendix G contains a copy of the ground investigation undertaken for the subject lands. Seven soil infiltration tests were undertaken in accordance with BRE Digest 365. SA05 was calculated to have an infiltration rate of 4.353 x 10⁻⁴ m/s. The other locations dropped too slowly to allow for a calculation of the infiltration rate as per BRE Digest 365. However, we do note that some infiltration and groundwater recharge will occur. Taking a conservative approach an infiltration rate of 0 m/h and a factor of safety of 10 has been used in the design of the infiltration basins proposed.

Based on the topography of the site relative to existing Rye Water and Upper Ditch flood levels etc, the hydrobrake flow controller devices has been designed for a submerged outlet scenario. As the risk of a submerged outlet is possible the hydrobrake will be fitted with a vent pipe which ensures that air is continuously available in the core of the vortex controller. This is similar to the flow control device installed for the adjacent Millerstown Phase 1.

Figure 3.3: Typical Vortex Vent Pipe

Maintaining available air at this point ensures that the vortex motion within the hydrobrake is not inhibited by a submerged outlet condition. Vortex vent pipes are commonly used where developments discharge to existing watercourses with high flood levels or where downstream sewers may be at risk of surcharging.

Details of the various aspects of the proposed attenuation system are shown on DBFL drawings 190009- DBFL-XX-XX-DR-C-3014 and 3015.

3.6 Interception Volume

To prevent pollutants or sediments discharging into water courses the GDSDS requires "interception storage" to be incorporated into the development. This interception storage is designed to receive the run-off for rainfall depths of 5mm up to 10mm if possible. The SUDS features including permeable paving will provide the necessary interception volume required by the GDSDS.

3.7 Design Standards

All services have been designed in accordance with the Department of Environment 'Recommendations for site development works for Housing Areas'. The allowable outflow from the whole of the development is limited in accordance with the GDSDS to 33.9l/s (i.e. Q_{bar}). Surface water pipe-work was sized using the Microdrainage Windes drainage modelling software. The following parameters apply:

- All main roads and footpaths assumed to be 100% impermeable.
- All roofs to houses assumed to be 100% impermeable.
- Permeable paving driveways assumed to be 50% impermeable.
- All open spaces and landscaped areas are not assumed to be contributing directly to the main surface water drain or attenuation systems.

•	Return period for pipe work	5 years,
		check 30-year 15 minute, no flooding.
		check 100-year flooding in designated areas.
•	Time of entry	5 minutes
•	Pipe Friction (Ks)	0.6 mm
•	Minimum Velocity	1.0 m/s
•	Standard Average Annual Rainfall	830mm
•	M5-60	15.4mm (Source Met Eireann)
•	Ratio r (M5-60/M5-2D)	0.279
•	Attenuation Systems Return Event	GDSDS Volume 2, p61, Criterion 3
		30 year no flooding on site.
		100 year check no internal property flooding. Flood routing plan. FFL freeboard above 100-year flood level. No flooding to adjacent areas.
•	Climate Change	20% increase in rainfall intensities as per the GDSDS)

• Factor of Safety for infiltration 10

Surface water sewers are designed in accordance with IS EN 752 and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

Standard surface water drainage details, as outlined on DBFL drawings 190009-DBFL-XX-XX-DR-C-3010 to 3012, are in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

The minimum pipe diameter for public surface water sewers is 225mm. Private drains within the proposed development will be 100mm.

Refer to drawing references 190009-DBFL-XX-XX-DR-C-3000 to 3003 for the proposed surface water layout.

Attenuation volume calculations for the main drainage network are included in Appendix B

3.8 Climate Change

Surface water calculations for the development made use of M5-60 rainfall data for Millerstown, Newtownmoyaghy, Co. Meath provided by Met Eireann. Rainfall intensities were increased by a factor of 20% to take account of climate change, as required by the GDSDS for attenuation storage design.

3.9 Pluvial Flooding Provision

The surface water network, attenuation storage and site levels are designed to accommodate a 100-year storm event and includes climate change provision. Floor levels of houses are set above the 100-year flood levels by a minimum of 0.5m for protection. For storms in excess of 100 years, the development has been designed to provide overland flood routes along the various development roads.

4.0 FOUL DRAINAGE

4.1 Existing Foul Drainage

There is an existing 375/450mm diameter trunk foul sewer which has been constructed as part of the granted Millerstown Phase 1 (MCC REF RA 150205 and ABP Ref PL 17.246141) to the south and west of the site located on the new link street. This 375/450mm trunk sewer discharges to the 600mm Irish Water foul sewer to the south of the subject site adjacent to the Rye Water. This 600mm sewer outfalls to the Kilcock pump station just east of the site. Proposed foul loading calculations for the development are detailed in Table 4.1 below

Development	No. of Residential Units	No. of Persons @ 2.7 per unit	Discharge per person per day	Peak Discharge (I/s)	Average Discharge (I/s)
North Site	309	834	150	9.56	1.593
South Site	266	718	150	8.229	1.372
Overall	575	1553	150	17.789	2.965

Table 4.1 - Proposed Developments Foul Loadings

4.2 Design Strategy

The general foul sewer strategy for the development will be to discharge by gravity to the existing 375/450mm diameter foul sewer to the south of the site which in turn discharges to the existing 600mm diameter Liffey Valley Sewerage Scheme Irish Water sewer. This, in turn, discharges to the existing Kilcock Foul Pump Station located to the south of the subject site. Refer to drawings 190009-DBFL-XX-XX-DR-C-3000 to 3003. The strategic foul sewer located in the link road serves the overall Kilcock Environs Lands, including the proposed school site. Irish Water in their Confirmation of Feasibility Letter, dated 18th of April 2019, attached in Appendix C have confirmed capacity is available to serve the proposed development subject to the applicant entering into a connection agreement.

Within the site foul sewer networks comprising 225mm and 150mm diameter sewers would serve the proposed development and discharge same to the existing 375/450mm sewer in the link street. Individual houses will connect to the 150/225mm diameter foul sewer via individual 100mm drains or per the Irish Water Code of Practice.

All foul drainage layouts and proposals have been designed in accordance with the Irish Water Code of Practice for Wastewater Infrastructure including pipe diameter, minimum gradients, layouts etc.

4.3 Design Calculation

Foul drains have been designed in accordance with Irish Water's Code of Practice, standard details and specifications.

The following criteria have been applied:

Demand	150 l/head/day
Discharge units	3.3 units per house (as EN752)
Pipe Friction (Ks)	1.5 mm
Minimum Velocity	0.75 m/s (self-cleansing velocity)
Maximum Velocity	3.0 m/s
Frequency Factor	0.5 for domestic use
Manhole Depths	< 5.0m

All construction details relating to foul sewer drainage are to be as per the Irish Water Standard details for same.

5.0 WATER SUPPLY AND DISTRIBUTION

5.1 Existing Water Supply

There is an existing public 280/315mm diameter PE 100 water main located in the new link street which runs along the subject sites southern and western boundaries. This 315 diameter PE 100 watermain was constructed as part of the granted Millerstown Phase 1 (MCC REF RA 150205 and ABP Ref PL 17.246141) in 2017 and 2018. This watermain will extend west to the R125 with all works to the watermain in the link street expected to be complete by Q1 of 2020. This strategic watermain will serve the Overall Kilcock Environs Lands, including the proposed school site.

5.2 Development Water Main Layout

The development's proposed water-main distribution system is indicated on drawing 190009-DBFL-XX-XX-DR-C-3005 and 3006. It is proposed to connect to the existing 280/315mm diameter water main to the site located on the link street as built in Phase 1 under *MCC REF RA 150205 and ABP Ref PL 17.246141*. The watermain layout within subject site consists of a primary 160/180mm diameter loop HDPE main with 110/125mm diameter secondary spurs connecting to same. All mains are generally looped where possible.

The connection to the public water main will include sluice valves, water meter, scour valve etc arrangement in accordance with the requirements of Irish Water. Confirmation of feasibility was granted by Irish Water on 18/04/2019, please refer to Appendix C.

A statement of design acceptance was issued by Irish water on 05/11/2019 and is attached in Appendix H.

The selected pipe material options for the development will be PE-100.

Individual houses will have their own connections to the distribution main via service connections and boundary boxes. Individual service boundary boxes will be of the type to suit Irish Water and to facilitate domestic meter installation.

5.3 Water Main Standards and Details

The water main layout and details are in accordance with Irish Water's Code of Practice and Standard Details. All valves, hydrant and metering fittings/details shall be in accordance with the requirements of Irish Water.

Hydrants are provided for fire-fighting at locations to ensure that each dwelling is within the required distance of a hydrant as per Irish Water Specification

5.4 Water Demand and Conservation

The estimated water demand for the proposed development is detailed below in table 5.1. Each house will provide 24 hours of cold-water storage in the header tank and houses will utilise water saving features for the fittings to reduce water demand.

Development	No. of Residential Units	No. of Persons @ 2.7 per unit	Discharge per person per day	Peak Demand (I/s)	Average Demand (I/s)
North Site	309	834	150	9.053	1.448
South Site	266	718	150	7.793	1.247
Overall	575	1553	150	16.846	2.695

 Table 5.1 – Proposed Developments Water Demand.

Appendix A

Irish SUDS Report

Site Drainage Evaluation

Site name: Millerstown Site location: Kilcock

> Report Reference: 1555500830091 Date: 17/4/2019

1. INTRODUCTION

This is a bespoke report providing initial guidance on potential implementation of SuDS for the development site in line with current best practice.

The use of this tool should be supplemented by more detailed guidance on SuDS best practice provided in a <u>number of</u> <u>sources</u>, principally the CIRIA SUDS Manual (2007), other CIRIA documents; the Use of SUDS in High Density Developments, HR Wallingford, (2005) and other HR Wallingford documents.

The objective is to provide some early guidance on the numbers and types of components that might be suitable for consideration within the site design. This may facilitate pre-application discussions with planners and other relevant authorities.

This guidance has been provided prior to the completion of the SUDS standards and the supporting guidance. However the principles of this tool are unlikely to be very different to the aims of the SUDS standards. HR Wallingford is not liable for the use of any output from the use of this tool and the performance of the drainage system. It is recommended that detailed design using appropriately experienced engineers professionals and tools is undertaken before finalising any drainage scheme arrangement for a site.

THE CONTENT OF THE REPORT

This report is split into 8 sections as follows:

- 2. Generic SuDS Best Practice Principles
- 3. Runoff Destination
- 4. Hydraulic Design Criteria
- 5. Water Quality Design Criteria
- 6. Site-Specific Drainage Design Considerations
- 7. SuDS Construction
- 8. SuDS Components Performance
- 9. Guidance on The Use of Individual Components

2. GENERIC SuDS BEST PRACTICE PRINCIPLES

To comply with current best practice, the drainage system should:

- (i) manage runoff at or close to its source;
- (ii) manage runoff at the surface;

(iii) be integrated with public open space areas and contribute towards meeting the objectives of the urban plan;

(iv) be cost-effective to operate and maintain.

The drainage system should endeavour to ensure that, for any particular site:

(i) natural hydrological processes are protected through maintaining Interception of an initial depth of rainfall and prioritising infiltration, where appropriate;

(ii) flood risk is managed through the control of runoff peak flow rates and volumes discharged from the site;(iii) stormwater runoff is treated to prevent detrimental impacts to the receiving water body as a result of urban contaminants.

In addition, it is desirable to maximise the amenity and ecological benefits associated with the drainage system where there are appropriate opportunities. SuDS are green infrastructure components and can provide health benefits, and reduce the vulnerability of developments to the impacts of climate change.

3. RUNOFF DESTINATION

Introduction

Infiltration should be prioritised as the method of controlling surface water runoff from the development site, unless it can be demonstrated that the use of infiltration would have a detrimental environmental impact.

Groundwater (via Infiltration)

Infiltration may not be appropriate for managing runoff from this site. Robust studies are reqired to confirm the significance of the following constraints to infiltration:

(1) This is a steeply sloping site and full consideration must be given to the hydrogeological infiltration pathways, to ensure that there is no risk of water re-emerging on the site or on other sites and contributing to downstream flood risk.

The groundwater beneath the site is designated as *SPZ I*, and this designation will define the treatment requirement for any infiltrated water (See Water Quality Design Criteria).

Surface water body

All runoff that cannot be discharged to groundwater will be managed on site and discharged to a surface water body.

The receiving surface water body for runoff from the site is: the Rye River. The riparian owner is: Waterways Ireland.

4. HYDRAULIC DESIGN CRITERIA

Introduction

Best practice criteria for hydraulic control require Interception, runoff and volume control.

Interception

To fulfill the requirements for Interception, there should normally be no runoff from the site for an initial depth of rainfall - usually 5mm. This is achieved through the use of infiltration, evapotranspiration, or rainwater harvesting.

If practicable, infiltration systems should be used to meet the Interception requirements for the site.

Flow and Volume Control

The site is a greenfield development, therefore runoff from the site needs to be constrained to the equivalent greenfield rates and volumes.

Infiltration and rainwater harvesting, or the use of Long Term Storage provide the means to limit runoff to the greenfield volume. Where volume control is not practicable, flows discharged from the site will need to be constrained to Qbar or 2 l/s/ha (whichever is the greater).

Infiltration will manage runoff for all events. The safety of exceedance flow paths should be checked in case of drainage system failure.

Attenuation and hydraulic controls will be used to manage flow rates.

5. WATER QUALITY DESIGN CRITERIA

Introduction

Current best practice takes a risk-based approach to managing discharges of surface runoff to the receiving environment. The following text provides guidance on the extent of water quality management likely to be appropriate for the site.

Hazard Classification

Runoff from clean roof surfaces (ie not metal roofs, roofs close to polluted atmospheric discharges, or roofs close to populations of flocking birds) is classified as Low in terms of hazard status.

Runoff from roads, parking and other areas of residential, commercial and industrial sites (that are not contaminated with waste, high levels of hydrocarbons, or other chemicals) is classified as Medium in terms of hazard status.

Treatment requirements for disposal to groundwater systems

Runoff from roofs will need one effective treatment stage prior to disposal to groundwater. Where sediment and other litter is prevented from entering the infiltration device, and the underlying subsoils can be demonstrated to provide effective treatment, then the process of infiltration will usually be sufficient.

Runoff from roads and parking areas will need 3 effective treatment stages prior to disposal to groundwater. Where sediment and litter is prevented from entering the infiltration device, and the underlying subsoils can be demonstrated to provide effective treatment, then the process of infiltration will usually be deemed to constitute one treatment stage. Two further upstream treatment stages will also be required.

4/17/2019

2019 geoservergisweb2.hrwallingford.co.uk/uksd/siteevaluationreport.aspx?a0=Millerstown&a1=Kilcock&a2=a&a3=b&a4=a&a5=c&a6=&a...

Infiltration may only be used where a risk assessment has been undertaken in accordance with http://www.netregs.gov.uk/netregs/100789.aspx, and the design effectively addresses the risks identified within the risk assessment.

6. SITE-SPECIFIC DRAINAGE DESIGN CONSIDERATIONS

The site is a high density residential site. The HR Wallingford documenet 'SuDS for high density developments' is a useful guidance document for efficient drainage design where space is heavily constrained.

Components likely to be particularly suitable for high density sites include:

• permeable pavement parking areas which can often manage roof runoff as well as rainfall falling on the parking surface;

- green roofs which limit runoff from roof surfaces;
- bioretention areas integrated within impermeable zones;
- individual property soakaways;
- subsurface infiltration and/or detention systems (eg beneath functional, permeable surfaces);
- infiltration/detention/retention ponds/basins/channels integrated within public open space areas.

The development is located within the floodplain. The design of the drainage is therefore likely to need to consider high ground water levels, downstream water level control during extreme events, and the possibity of inundation of the drainage infrastructure. To get more insight into this aspect, please use <u>Joint Probability Analysis Tool</u>.

Where SuDS are being designed for sites with steep slopes, careful consideration of site layout planning and SUDS alignment is needed to minimise gradients of conveyance pathways and construction of large embankments, and to minimise flood risk when drainage systems are exceeded.

The design of SuDS with access to temporary or permanent water should consider public health and safety as well as issues associated with construction and operational management of the structures. Health and safety issues and risk mitigation features are presented in the <u>CIRIA SuDS Manual</u>.

Individual SuDS components should not be treated in isolation, but should be seen together as providing a suite of drainage features which are appropriate in different combinations for varying scales. It is always desirable to have a mix of SuDS components across the site as different components have different capacities for treatment of individual pollutants.

7. SuDS CONSTRUCTION

SuDS are a combination of civil engineering structures and landscaping practice. Due to the limited experience of building SuDS in the water industry, there are a number of key issues which need to be particularly considered as their construction requires a change in approach to some standard construction practices.

• SuDS components should be constructed in line with either the manufacturer's guidelines or best practice methods.

The construction of SuDS usually only requires the use of fairly standard civil engineering construction and landscaping operations, such as excavation, filling, grading, top-soiling, seeding, planting etc. These operations are specified in various standard construction documents, such as the Civil Engineering Specification for the Water Industry (CESWI).
 Construction of soakaways is regulated by the Buildings Regulations part H (Drainage and waste disposal) which sets

out the requirements for drainage of rainwater from the roofs of buildings.

• During construction, any surfaces which are intended to enable infiltration must be protected from compaction. This includes protecting from heavy traffic or storage of materials.

• Water contaminated with silt must not be allowed to enter a watercourse or drain as it can cause pollution. All parts of the drainage system must be protected from construction runoff to prevent silt clogging the system and causing pollution downstream. Measures to prevent this include soil stabilisation, early construction of sediment management basins, channelling run-off away from watercourses and surface water drains, and erosion prevention measures.

• After the end of the construction period and prior to handover to the site owner/operator:

- Subsoil that has been compacted during construction activities should be broken up prior to the re-application of topsoil to garden areas and other areas of public open space to reinstate the natural infiltration performance of the ground;

- Any areas of the SuDs that have been compacted during construction but are intended to permit infiltration must be completely refurbished;

- Checks must be made for blockages or partial blockages of orifices or pipe systems;
- Any silt deposited during the construction must be completely removed;
- Soils must be stabilised and protected from erosion whilst planting becomes established.

Detailed guidance on the construction related issues for SuDS is available in the SuDS Manual and the associated <u>Construction Site handbook</u> (CIRIA, 2007).

8. SuDS COMPONENTS PERFORMANCE

	Interception	Peak flow control: Low	Peak flow control: High	Volume reduction	Volume control	Gross sediments	Fine sediments	Hydrocarbons/ PAHs	Metals	Nutrients
Rainwater Harvesting	Y	Y	S	Y	N	N	N	N	N	N
Pervious Pavement	Y	Y	Y	Y	Y	Y	Y	Y	Y	Var
Filter Strips	Y	N	N	N	N	Y	N	Y	Y	Var
Swales	Y	Y	S	Y(*)	N	Y	Y(+)	Y	Y	Y(-)
Trenches	Y	Y	S	Y(*)	N	N	N	Y	Y	Y(-)
Detention Basins	Y	Y	Y	N	Y	Y	Y(+)	Y	Y	Var
Ponds	N	Y	Y	N	Y	N(~)	Y	Limited	Y	Var
Wetlands	N	Y	S	N	Y	N(~)	Y	Limited	Y	Y
Soakaways	Y	Y	S	Y	N	N(~)	N(~)	Y(")	Y(")	N
Infiltration Basins	Y	Y	S	Y	N	N(~)	N(~)	Y(")	Y(")	N
Green Roofs	Y	Y	N	N	N	N	N	Y	N	N
Bioretention Systems	Y	Y	S	Y(*)	N	N(~)	Y	Y	Y	Y
Proprietary Treatment Systems	N	N	N	N	N	Y	Y	Y(!)	Y(!)	Y(!)
Subsurface Storage	N	Y	Y	N	Y	N(~)	N	N	N	N
Subsurface Conveyance Pipes	N	N	N	N	Y	N(~)	N	N	N	N

Notes:

S: Not normally with standard designs, but possible where space is available and designs mitigate impact of high flow rates.

Y(*): Where infiltration is facilitated by the design.

N(~): Gross sediment retention is possible, but not recommended due to negative maintenance and performance implications.

Y(+): Where designs minimise the risk of fine sediment mobilisation during larger events.

Y(!): Where designs specifically promote the trapping and breakdown of oils and PAH based constitutents.

Y("): Where subsurface soil structure facilitates the trapping and breakdown of oils and PAH based constituents.

Var: The nutrient removal performance is variable, and can be negative in some situations.

Y(-): Good nutrient removal performance where subsurface biofiltration systems with a permanently saturated zone included within the design.

9. GUIDANCE ON THE USE OF INDIVIDUAL COMPONENTS

Rainwater Harvesting

• High density

For large occupancy buildings (offices, supermarkets, etc.), communal rainwater harvesting systems may provide significant stormwater management benefits.

Roofs

Rainwater harvesting systems can be used to effectively drain roofs and provide both water supply and stormwater management benefits.

Pervious Pavement

• High density

Pervious pavement systems provide an effective way to drain, store and treat the surface runoff, all within the footprint of the car park area. Larger areas of communal parking will provide the most cost effective systems.

• Roofs

Roof water can be drained into pervious pavement areas using diffusers to dissipate the point inflows. Detailed design of the pavement will need to take account of the additional impermeable roof area.

Roads

Some types of pervious pavement can be used for relatively highly trafficked roads and pavement manufacturers should be consulted on the appropriate specification.

4/17/2019 geoservergisweb2.hrwallingford.co.uk/uksd/siteevaluationreport.aspx?a0=Millerstown&a1=Kilcock&a2=a&a3=b&a4=a&a5=c&a6=&a...

• Car parks/other impermable surfaces

Pervious pavements provide effective drainage, storage and treatment of car park surfacing,

Steep site

Pervious pavements can be used on sloping sites, with the use of internal dams in order to attenuate and store the water effectively through a cascade system.

Filter Strips

• High density

Filter strips can be used as treatment for road or car park runoff where space allows.

Roads

Filter strips can provide treatment for road runoff, upstream of swales or trench components. They can reduce the need for kerbing and runoff collection systems.

• Car parks/other impermable surfaces

Filter strips can provide treatment for runoff from impermeable surfaces, upstream of swales or trench components. They can reduce the need for kerbing and runoff collection systems.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Filter strips can be used on sloping sites, where implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Swales

• High density

Swales can be used for road or car park drainage where space allows. Underdrained swales (ie with a subsurface gravel filled conveyance and treatment trench) can provide a more efficient solution for hydraulic control and water quality treatment.

• Roofs

Swales can be used to convey roof water to other parts of the site.

• Roads

Swales provide treatment and conveyance of road runoff. There are a range of swale types - standard grass channels, underdrained swales, and wetland swales - depending on drainage requirements.

• Car parks/other impermable surfaces

Swales provide treatment and conveyance of runoff from impermeable areas. There are a range of swale types - standard grass channels, underdrained swales, and wetland swales - depending on drainage requirements.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

Steep site

Swales can be used on sloping sites, where implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Trenches

• High density

Trenches can provide treatment and runoff control for road or car park drainage.

Roofs

Trenches can be used to convey roof water to other parts of the site.

• Roads

Trenches can provide treatment and conveyance of road runoff. They require effective pretreatment to minimise the risk of blockage.

• Car parks/other impermable surfaces

Trenches can provide treatment and conveyance of runoff for impermeable areas.

4/17/2019 geoservergisweb2.hrwallingford.co.uk/uksd/siteevaluationreport.aspx?a0=Millerstown&a1=Kilcock&a2=a&a3=b&a4=a&a5=c&a6=&a...

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Trenches can be used on sloping sites, where implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Detention Basins

• High density

Detention basins can be used in high density developments when effectively integrated within public open space areas.

• Roofs

Detention basins can be used to attenuate and treat runoff.

Roads

Detention basins can be used to attenuate and treat runoff.

• Car parks/other impermable surfaces

Detention basins can be used to attenuate and treat runoff.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria. A risk assessment should be used to determine the maximum appropriate depth of stored water in the basin.

• Steep site

Large basins may require embankments that may pose a safety risk to site residents.

Ponds

• High density

It is unlikely that a pond would be suitable for high density development, unless it is an integral amenity feature within the public open space area.

• Roofs

Ponds can be used to attenuate and treat roof runoff.

Roads

Ponds can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in ponds for extended periods, nutrient concentrations can rise - particularly in the summer months, and the pond can become unattractive with poor amenity and biodiversity potential.

• Car parks/other impermable surfaces

Ponds can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in ponds for extended periods, nutrient concentrations can rise - particularly in the summer months, and the pond can become unattractive with poor amenity and biodiversity potential.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Large ponds may require embankments that may pose a safety risk to site residents.

Other

Ponds built in permeable soils will require lining to maintain the water level of the permanent pool. The lining may be finished 100 or 200 mm lower than the outlet invert to encourage some infiltration to take place to contribute to interception.

Wetlands

• High density

It is unlikely that a wetland would be suitable for high density development, unless it is an integral amenity feature within the public open space area.

4/17/2019

geoservergisweb2.hrwallingford.co.uk/uksd/siteevaluationreport.aspx?a0=Millerstown&a1=Kilcock&a2=a&a3=b&a4=a&a5=c&a6=&a...

Roofs

Wetlands can be used to attenuate and treat roof runoff.

• Roads

Wetlands can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in wetlands for extended periods, nutrient concentrations can rise - particularly in the summer months, and the wetland can become unattractive with poor amenity and biodiversity potential.

• Car parks/other impermable surfaces

Wetlands can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in wetlands for extended periods, nutrient concentrations can rise - particularly in the summer months, and the wetland can become unattractive with poor amenity and biodiversity potential.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

It is likely that wetlands would require embankments that may pose safety risks to site residents.

Soakaways

• High density

Individual property soakaways can be built in garden areas. Attenuation storage can be built beneath impermeable surfaces such as roads or car parks or public spaces, thus minimising the use of space needed for the drainage system.

• Roofs

Soakaways can be used to store, treat, and dispose roof runoff.

Roads

Upstream treatment is normally required if soakaways are used to manage road runoff directly. Sediments and litter should be prevented from entering the soakaway.

• Car parks/other impermable surfaces

Upstream treatment is normally required if soakaways are used to manage road runoff directly. Sediments and litter should be prevented from entering the soakaway.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

Steep site

Consideration must be given to the risk of infiltrated water re-emerging further down the slope and causing a downstream flood hazard.

Infiltration Basins

• HighDensity

Infiltration basins can often be used in high density developments when effectively integrated within public open space areas.

• Roofs

Infiltration basins can be used to attenuate and treat roof runoff.

Roads

Upstream treatment is normally required if infiltration basins are used to manage road runoff. Sediments should be prevented from entering the system.

• Car parks/other impermable surfaces

Upstream treatment is normally required if infiltration basins are used to manage runoff from trafficked surfaces. Sediments should be prevented from entering the system.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria. A risk assessment should be used to determine the maximum depth of stored water in the basin.

• Steep site

4/17/2019 geoservergisweb2.hrwallingford.co.uk/uksd/siteevaluationreport.aspx?a0=Millerstown&a1=Kilcock&a2=a&a3=b&a4=a&a5=c&a6=&a...

Consideration must be given to the risk of infiltrated water re-emerging further down the slope and causing a downstream flood hazard. Large basins may require embankments that may pose safety risks to downstream residents.

Green Roofs

• HighDensity

Green roofs can be implemented most cost-effectively on larger roofs. They provide a range of benefits in addition to stormwater management, including combatting the heat island effect, biodiversity and amenity functions.

• Roofs

Green roofs can be designed to provide interception, management and treatment of rainfall up to specified rainfall depths.

Bioretention Systems

• High density

Biorention systems (either cells or linear systems) can be used for road or car park drainage where space allows.

• Roofs

Bioretention systems can be used to attenuate and treat roof runoff.

Roads

Linear bioretention systems (ie biofiltration swales) can be used to attenuate and treat road runoff.

• Car parks/other impermable surfaces

Bioretention systems canbe used for car park drainage.

• Site size > 50 ha

Bioretention systems will tend to be suitable for managing small areas only. The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Bioretention systems can be used on sloping sites, when implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Proprietary Treatment Systems

• High density

Proprietary treatment systems may be appropriate to use particularly where there is no space for surface, vegetated treatment systems. However, regular monitoring needs to be ensured so that they are maintained so that they continue to function effectively.

• Roads

Proprietary treatment systems can be used where surface vegetated systems are impracticable. However, regular monitoring needs to be ensured so that they are maintained so that they continue to function effectively.

• Car parks/other impermable surfaces

Proprietary treatment systems could be used where surface vegetated systems are impracticable. However, regular monitoring needs to be ensured so that they are maintained so that they continue to function effectively.

• Site size > 50 ha

Proprietary treatment systems will tend to be suitable for managing small areas only. The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

Subsurface Storage

• High density

Subsurface storage of runoff is likely to be needed for high density developments. This can be implemented via a range of proprietary high void systems, or within gravels beneath permeable pavements which provide treatment as well. Subsurface storage allows the land above the storage system to be used for car parking or public open space areas.

• Roofs

Subsurface storage can be used to attenuate roof runoff.

• Roads

Subsurface storage can be used to attenuate road runoff.

• Car parks/other impermable surfaces

Subsurface storage can be used to attenuate car park runoff.

Subsurface Conveyance Pipes

• High density

Subsurface conveyance systems may be an important means of connecting drainage components together and routing flows downstream. Space constraints in high density developments are likely to constrain the use of surface conveyance options.

<u>HR Wallingford Ltd</u>, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.

Appendix B

Attenuation Storage Calculations

DBFL Consulting Engineers										1
Ormond House North Site										
Upper Ormond Quay										
Dublin 7	ia guay			ALLC	Accentración volume					() <u>) .</u>
									– Micr	Ũ
Date 19/07/	2019			Desi	gned b	у ЈВ			Dcair	סחהר
File North	Site Stor	age.sr	СХ	Chec	ked by	BM			DIGII	lage
Innovyze				Sour	ce Con	trol 201	8.1			
	Summarv	of Resu	ilts f	or 10	0 vear	Return	Period	(+20%)		
	···· · ·				<u> </u>					
		Н	alf Dra	in Tir	ne : 844	minutes.				
	Storm	Max	Max	м	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration	Control S	Outflow	Volume		
		(m)	(m)	(1	/s)	(l/s)	(1/s)	(m³)		
15	min Summer	63 836	0 136		0 0	183	18 3	589 3	ΟK	
30	min Summer	63.887	0.187		0.0	18.5	18.5	811.9	0 K	
60	min Summer	63.938	0.238		0.0	18.8	18.8	1041.5	ОК	
120	min Summer	63.988	0.288		0.0	19.0	19.0	1269.6	ОК	
180	min Summer	64.016	0.316		0.0	19.2	19.2	1397.2	ОК	
240	min Summer	64.034	0.334		0.0	19.3	19.3	1479.6	0 K	
360	min Summer	64 055	0 355		0.0	19.0	19.0	1574 6	0 K	
480	min Summer	64.064	0.364		0.0	19.4	19.4	1618.1	0 K	
600	min Summer	64 067	0 367		0.0	19.1	19.1	1631 6	0 K	
720	min Summer	61 066	0.366		0.0	19.1	19.1	1626 6	O K	
960	min Summer	64 062	0.362		0.0	19.1	19.1	1607 6	O K	
1440	min Summer	64 055	0.355		0.0	19.1	19.1	1573 8	O K	
2160	min Summor	64.033	0.333		0.0	10.3	10.3	1516 9	OK	
2100	min Summer	64.042	0.342		0.0	19.5	19.3	1115 1	0 K	
12200	min Summer	62 001	0.327		0.0	10.1	10.1	1201 0	O K	
4320	min Summer	62 054	0.291		0.0	19.1	19.1	1116 1	0 K	
3700	min Summer	C2 010	0.234		0.0	10.9	10.9	1110.1	O K	
7200	min Summer	62 005	0.210		0.0	10.7	10.7	9J4.0 002 /	0 K	
10090	min Summer	62 052	0.152		0.0	10.5	10.0	665 2	O K	
15	min Winter	63 853	0.153		0.0	18 3	18 3	663 2	0 K	
15	IIIIII WINCEI	03.033	0.133		0.0	10.5	10.0	005.2	0 1	
		Storm	F	Rain	Flooded	l Discharg	e Time-Pe	eak		
		Event	(m	m/hr)	Volume	Volume	(mins	;)		
					(m³)	(m³)				
			_							
	15	min Sur	nmer 8	0.658	0.0	614.	4	26		
	30	min Sur	nmer 5	5.866	0.0	851.	6	41		
	60	min Sur	nmer 3	6.471	0.0) 1112.	5	70		
	120	min Sur	nmer 2	3.036	0.0	1405.	3	128		
	180	min Sur	nmer 1	7.461	0.0	1600.	0	188		
	240	min Sur	nmer 1	4.308	0.0	1747.	2 2	248		
	360	min Sur	nmer 1	0.777	0.0	1975.	3	366		
	480	min Sur	nmer	8.802	0.0	2150.	4 4	484		
	600	min Sur	nmer	7.518	0.0	2297.	1	604		
	720	min Sur	nmer	6.607	0.0	2422.	5	690		
	960	min Sur	nmer	5.386	0.0	2633.	0	804		
	1440	min Sur	nmer	4.036	0.0	2959.	9 1	060		
	2160	min Sur	nmer	3.024	0.0	3324.	6 1	476		
	2880	min Sur	nmer	2.462	0.0	3613.	4 1	884		
	4320	min Sur	nmer	1.841	0.0	4050.	2 2	/24		
	5760	min Sur	nmer	⊥.496	0.0	4391.	/ 3.	512		

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

1.273

0.998

4672.4

4912.5

5122.4

688.1

7200 min Summer

10080 min Summer

8640 min Summer 1.116

15 min Winter 80.658

4264

5024

5752

26

DBFL Consulting Engineers									Page 2	
Ormond House North Site										
pper Ormor	nd Quay			Atte	nuatio	n Volum	е			
Dublin 7								Micro		
ate 19/07,	/2019			Desi	gned b	у ЈВ				
File North Site Storage.srcx Checked by BM								Digitig		
Innovyze				Sour	ce Con	trol 20	18.1			
	Summary	of Resi	ults f	or 10	0 year	Return	Period	(+20%)	_	
	Storm	Max	Max	м	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration	Control	Σ Outflow	Volume		
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
30	min Winter	63,910	0.210		0.0	18.6	18.6	914.6	ОК	
60	min Winter	63.968	0.268		0.0	18.9	18.9	1175.7	0 K	
120	min Winter	64.026	0.326		0.0	19.2	19.2	1441.4	ОК	
180	min Winter	64.059	0.359		0.0	19.4	19.4	1593.4	ОК	
240	min Winter	64.081	0.381		0.0	19.5	19.5	1695.1	ОК	
360	min Winter	64.108	0.408		0.0	19.6	19.6	1820.2	ОК	
480	min Winter	64.131	0.431		0.0	19.7	19.7	1888.1	ОК	
600	min Winter	64.153	0.453		0.0	19.9	19.9	1923.2	O K	
720	min Winter	64.176	0.476		0.0	20.0	20.0	1937.1	O K	
960	min Winter	64.156	0.456		0.0	19.9	19.9	1926.1	ΟK	
1440	min Winter	64.118	0.418		0.0	19.7	19.7	1855.1	O K	
2160	min Winter	64.096	0.396		0.0	19.6	19.6	1764.1	O K	
2880	min Winter	64.070	0.370		0.0	19.4	19.4	1644.2	ΟK	
4320	min Winter	64.011	0.311		0.0	19.2	19.2	1374.6	ΟK	
5760	min Winter	63.952	0.252		0.0	18.9	18.9	1105.4	ОК	
7200	min Winter	63.896	0.196		0.0	18.6	18.6	854.9	ОК	
8640	min Winter	63.845	0.145		0.0	18.3	18.3	629.5	ОК	
10080	MIN WINCE	03.000	0.100		0.0	10.1	10.1	432.4	U K	
		Storm	1	Rain	Flooded	l Dischar	ge Time-P	eak		
		Event	(m	m/hr)	Volume (m³)	Volume (m³)	e (mins	;)		
	30	min Wir	nter 5	5.866	0.0	954	.2	40		
	60	min Wir	nter 3	6.471	0.0	1245	.9	70		
	120	min Wir	nter 2	3 036	0 0	1574	4	126		

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	55.866	0.0	954.2	40
60	min	Winter	36.471	0.0	1245.9	70
120	min	Winter	23.036	0.0	1574.4	126
180	min	Winter	17.461	0.0	1790.8	184
240	min	Winter	14.308	0.0	1957.3	244
360	min	Winter	10.777	0.0	2211.8	358
480	min	Winter	8.802	0.0	2408.1	472
600	min	Winter	7.518	0.0	2573.2	586
720	min	Winter	6.607	0.0	2712.2	696
960	min	Winter	5.386	0.0	2948.0	906
1440	min	Winter	4.036	0.0	3158.7	1134
2160	min	Winter	3.024	0.0	3726.3	1604
2880	min	Winter	2.462	0.0	4045.4	2056
4320	min	Winter	1.841	0.0	4538.1	2944
5760	min	Winter	1.496	0.0	4916.6	3752
7200	min	Winter	1.273	0.0	5230.8	4544
8640	min	Winter	1.116	0.0	5503.3	5280
10080	min	Winter	0.998	0.0	5742.1	5960

©1982-2018 Innovyze
DBFL Consulting Engineers	Page 3								
Ormond House	North Site								
Upper Ormond Quay	Attenuation Volume								
Dublin 7	Micco								
Date 19/07/2019	Designed by JB								
File North Site Storage.srcx	Checked by BM								
Innovyze	Source Control 2018.1								
Rainfall DetailsRainfall ModelFSRWinter StormsYesReturn Period (years)100Cv (Summer)0.750Region Scotland and IrelandCv (Winter)0.840M5-60 (mm)15.400Shortest Storm (mins)15Ratio R0.279Longest Storm (mins)10080Summer StormsYesClimate Change %+20									
<u>Time Area Diagram</u> Total Area (ha) 4.077									
Time (mins) Area Time (mins) From: To: (ha) From: To:	Area Time (mins) Area Time (mins) Area (ha) From: To: (ha) From: To: (ha)								
0 4 0.294 4 8	2.331 8 12 1.381 12 16 0.070								

DBFL Consult:	Page 4									
Ormond House			North	Site						
Upper Ormond	Quay		Attenu	ation Vo	lume					
Dublin 7							Micco			
Date 19/07/20	019		Design	ed by JB	5					
File North S:	ite Stora	age.srcx	Checke	d by BM			Diamaye			
Innovyze										
<u>Model Details</u>										
Storage is Online Cover Level (m) 64.700										
	Infiltration Basin Structure									
		_								
II	nfiltratio	n Coefficien	ert Level t Base (m/ t Side (m/	(m) 63.7 hr) 0.000 hr) 0.000	00 Safety 100 Po 100	rosity 1.0	0			
Depth (m)	Area (m²)	Depth (m) A	rea (m²) [)epth (m)	Area (m²)	Depth (m)	Area (m²)			
0.000	4260.0	0.700	0.0	1.400	0.0	2.100	0.0			
0.100	4360.0	0.800	0.0	1.500	0.0	2.200	0.0			
0.200	4460.0	1 000	0.0	1 700	0.0	2.300	0.0			
0.300	4660 0	1 100	0.0	1 800	0.0	2.400	0.0			
0.500	0.0	1.200	0.0	1.900	0.0	2.000	0.0			
0.600	0.0	1.300	0.0	2.000	0.0					
	<u>H</u>	<u>lydro-Brake</u>	<u>® Optimu</u>	<u>m Outflo</u>	<u>ow Contro</u>	<u>1</u>				
		IIni	+ Peferen	O MD-SHE	-018/-2010-	-2002-2010				
		Desi	an Head (n)	-0104-2010-	2.002				
		Desigr	1 Flow (1/3)	s)		20.1				
		5	Flush-Flo	O™	(Calculated				
			Objecti	ve Minim	ise upstrea	am storage				
			Applicati	on		Surface				
		Sun	np Availab	le		Yes				
		Di	lameter (mi	m) >		184				
	Minimum O	itlet Pipe Di	amotor (m	n) m)		62.198				
	Suggeste	ed Manhole Di	lameter (mi	m)		1800				
				,						
		Control E	Points	Head (m	n) Flow (1/	s)				
	De	sign Point (Calculated	2.00	2 20	.1				
			Flush-Flo	™ 0.58	30 20	.1				
		_	Kick-Flo	® 1.23	35 16	.0				
	Me	an Flow over	Head Rang	е	- 17	.5				
The hydrologi	ical calcu	lations have	heen hase	d on the i	Head/Discha	arge relati	onship for the			
Hvdro-Brake®	Optimum as	s specified.	Should a	nother tv	pe of conti	col device	other than a			
Hydro-Brake (Dptimum® be	e utilised th	nen these	storage r	outing calo	culations w	vill be			
invalidated	-			-	-					
	low (1/-)	Dooth (m) El	ow (1/-) -	onth ()	Flor (1/a)	Donth ()	Flow (1/-)			
Deptn (m) Fl	LOW (1/S)	rebru (m) RT	∪w (⊥/S) L	eptn (m)	гтом (T\S)	рерти (m)	FIOW (I/S)			
0.100	6.5	0.800	19.7	2.000	20.1	4.000	28.0			
0.200	16.7	1.000	18.8	2.200	21.0	4.500	29.6			
0.300	18.7	1.200	16.6	2.400	21.9	5.000	31.1			
0.400	19.6	1.400	16.9	2.600	22.7	5.500	32.6			
0.500	20.0	1.600	18.0	3.000	24.4	6.000	34.0			
0.600	20.1	1.800	19.1	3.500	26.2	6.500	35.3			
		©19	982-2018	Innovyz	e					

DBFL Consulting Engineers					
Ormond House	North Site				
Upper Ormond Quay	Attenuation Volume				
Dublin 7		Mirro			
Date 19/07/2019	Designed by JB				
File North Site Storage.srcx	Checked by BM	Diamage			
Innovyze	Source Control 2018.1				

<u>Hydro-Brake® Optimum Outflow Control</u>

Depth (m)	Flow (1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
7.000	:	36.6	8.	000		39.1	9.	.000		41.3				
7.500	:	37.9	8.	500		40.2	9.	500		42.4				

DBFL Consulting Engineers									Page	1	
Ormond Hous	se			Sout	h Site						
Upper Ormor	nd Ouav			7++0	nuation	Volume					
	ia guay			ALLE	iluaciói	I VOLUME				() <u>,</u>	
Dublin /									_Micr	D	
Date 19/0//2019 Designed by JB										าลตอ	
File South	Site Stor	age.sr	СХ	Chec	ked by	BM			DIGI	iage	
Innovyze	Innovyze Source Control 2018.1										
	_										
		Ha	alf Dra	in Tim	ne : 1000	minutes.					
									.		
	Storm	Max	Max	M	ax	Max	Max	Max	Status		
	Event	TeAeT	Deptn (m)	INTII:	(a)	Control 2	(1/a)	volume			
		(m)	(m)	(1	/s)	(1/5)	(1/5)	(m-)			
15	o min Summer	62.331	0.131		0.0	12.5	12.5	458.9	ΟK		
30) min Summer	62.379	0.179		0.0	12.7	12.7	633.3	ΟK		
60) min Summer	62.429	0.229		0.0	12.9	12.9	814.6	ΟK		
120) min Summer	62.478	0.278		0.0	13.0	13.0	998.7	ΟK		
180) min Summer	62.506	0.306		0.0	13.1	13.1	1104.0	ΟK		
240) min Summer	62.525	0.325		0.0	13.2	13.2	1174.4	ΟK		
360) min Summer	62.548	0.348		0.0	13.3	13.3	1260.1	ΟK		
480) min Summer	62.560	0.360		0.0	13.3	13.3	1306.1	ΟK		
600) min Summer	62.566	0.366		0.0	13.3	13.3	1328.4	ΟK		
720) min Summer	62.567	0.367		0.0	13.3	13.3	1335.2	ΟK		
960) min Summer	62.565	0.365		0.0	13.3	13.3	1324.3	ΟK		
1440) min Summer	62.558	0.358		0.0	13.3	13.3	1300.3	ΟK		
2160) min Summer	62.549	0.349		0.0	13.3	13.3	1264.1	ΟK		
2880) min Summer	62.537	0.337		0.0	13.2	13.2	1219.5	ΟK		
4320) min Summer	62.509	0.309		0.0	13.1	13.1	1112.5	ΟK		
5760) min Summer	62.478	0.278		0.0	13.0	13.0	997.1	ОК		
/200) min Summer	62.44/	0.24/		0.0	12.9	12.9	882.3	OK		
8640) min Summer	62.41/	0.21/		0.0	12.8	12.8	//1./	OK		
10080) min Summer	62.388	0.188		0.0	12.7	12.7	667.3	OK		
10	min winter	62.34/	0.14/		0.0	12.0	12.6	510.2	ΟK		
		Storm	F	Rain	Flooded	Discharge	• Time-Pe	eak			
		Event	(m	m/hr)	Volume	Volume	(mins)			
					(m³)	(m³)					
	1.5	min Sur	nmer 8	0.658	0.0	477.1		30			
	30	min Sur	nmer 5	5.866	0.0	662.6	5	44			
	60	min Sur	nmer 3	6.471	0.0	865.4		72			
	120	min Sur	nmer 2	3.036	0.0	1093.5		L32			
	180	min Sur	nmer 1	7.461	0.0	1243.9) 1	L90			
	240	min Sur	nmer 1	4.308	0.0	1358.9	2	250			
360 min Summer 10.777 0.0 1535.9 370							370				
	480	min Sur	nmer	8.802	0.0	1672.0) 4	188			
	600	min Sur	nmer	7.518	0.0	1785.7		506			
	720	min Sur	nmer	6.607	0.0	1883.4	-	724			
	960	min Sur	nmer	5.386	0.0	2047.0) {	364			
	1440	min Sur	nmer	4.036	0.0	2153.7	11	L18			
	2160	min Sur	nmer	3.024	0.0	2587.6	5 15	520			
1	2880	min Sur	nmer	2.462	0.0	2807.7	10	940			

720	min	Summer	6.607	0.0	1883.4	724
960	min	Summer	5.386	0.0	2047.0	864
1440	min	Summer	4.036	0.0	2153.7	1118
2160	min	Summer	3.024	0.0	2587.6	1520
2880	min	Summer	2.462	0.0	2807.7	1940
4320	min	Summer	1.841	0.0	3150.1	2772
5760	min	Summer	1.496	0.0	3410.8	3576
7200	min	Summer	1.273	0.0	3631.3	4336
8640	min	Summer	1.116	0.0	3819.5	5112
10080	min	Summer	0.998	0.0	3984.7	5864
15	min	Winter	80.658	0.0	535.2	30
		©1	982-2018	Innovy	ze	

DBFL Consult		Page 2								
Ormond House	Ormond House South Site									
Upper Ormono	d Quay			Attenuatio	n Volum	le				
Dublin 7										
Date 19/07/2	2019			Designed b	Designed by JB					
File South S	Site Stora	age.sr	CX	Checked by	Drainage					
Innounzo										
тшоууге				Source con	LIOI 20	10.1				
	Summary	of Resi	ilts f	or 100 year	Return	Period	(+20%)			
	<u>bananar</u> y	1.000	<u>x = 00 =</u>	01 100 9041		. 101104	(200)	-		
s	Storm	Max	Max	Max	Max	Max	Max	Status		
E	Ivent	Level	Depth	Infiltration	Control	Σ Outflow	Volume			
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)			
30	min Winter	62.401	0.201	0.0	12.8	12.8	713.3	0 K		
60	min Winter	62.457	0.257	0.0	13.0	13.0	919.7	ОК		
120	min Winter	62.514	0.314	0.0	13.2	13.2	1132.1	O K		
180	min Winter	62.547	0.347	0.0	13.3	13.3	1256.6	0 K		
240	min Winter	62.569	0.369	0.0	13.3	13.3	1341.4	O K		
360	min Winter	62.597	0.397	0.0	13.4	13.4	1450.3	O K		
480	min Winter	62.617	0.417	0.0	13.5	13.5	1514.6	O K		
600	min Winter	62.635	0.435	0.0	13.6	13.6	1553.1	O K		
720	min Winter	62.652	0.452	0.0	13.6	13.6	1574.5	O K		
960	min Winter	62.671	0.471	0.0	13.7	13.7	1585.2	O K		
1440	min Winter	62.629	0.429	0.0	13.5	13.5	1542.6	O K		
2160	min Winter	62.606	0.406	0.0	13.5	13.5	1481.9	O K		
2880	min Winter	62.586	0.386	0.0	13.4	13.4	1408.0	O K		
4320	min Winter	62.539	0.339	0.0	13.2	13.2	1228.5	O K		
5760	min Winter	62.489	0.289	0.0	13.1	13.1	1039.7	0 K		
7200	min Winter	62.440	0.240	0.0	12.9	12.9	856.9	0 K		
8640	min Winter	62.394	0.194	0.0	12.7	12.7	686.6	0 K		
10080	min Winter	62.351	0.151	0.0	12.6	12.6	531.1	O K		

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
30	min	Winter	55.866	0.0	741.9	44
120	min	Winter	23.036	0.0	1224.7	130
180	min	Winter	17.461	0.0	1393.3	188
240	min	Winter	14.308	0.0	1521.8	246
360	min	Winter	10.777	0.0	1720.3	362
480	min	Winter	8.802	0.0	1872.8	478
600	min	Winter	7.518	0.0	1999.4	592
720	min	Winter	6.607	0.0	2109.5	704
960	min	Winter	5.386	0.0	2200.1	922
1440	min	Winter	4.036	0.0	2191.4	1192
2160	min	Winter	3.024	0.0	2897.4	1644
2880	min	Winter	2.462	0.0	3144.1	2112
4320	min	Winter	1.841	0.0	3526.8	2992
5760	min	Winter	1.496	0.0	3820.1	3864
7200	min	Winter	1.273	0.0	4067.3	4688
8640	min	Winter	1.116	0.0	4277.7	5448
10080	min	Winter	0.998	0.0	4460.9	6160

©1982-2018 Innovyze

DBFL Consulting Engineers	Page 3							
Ormond House	South Site							
Upper Ormond Quay	Attenuation Volume							
Dublin 7	Micco							
Date 19/07/2019	Designed by JB							
File South Site Storage.srcx	Checked by BM							
Innovyze	Source Control 2018.1							
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 100 Cv (Summer) 0.750 and and Ireland Cv (Winter) 0.840 15.400 Shortest Storm (mins) 15 0.279 Longest Storm (mins) 10080 Yes Climate Change % +20							
<u>Time Area Diagram</u>								
Tot	al Area (ha) 3.170							

Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
0	4	0.078	8	12	1.703	16	20	0.046
4	8	0.797	12	16	0.545			

DBFL Consult	Page 4										
Ormond House											
Upper Ormond	Quay		Attenu	ation Vo	olume						
Dublin 7							Micro				
Date 19/07/2	019		Design	ed by JH	3						
File South S	Diamage										
Innovyze											
Madal Dataila											
MODEL DETAILS											
Storage is Online Cover Level (m) 63.200											
		<u>Infilt</u>	ration Ba	<u>isin Str</u>	<u>ucture</u>						
I	infiltratio	In n Coefficie	vert Level nt Base (m/	(m) 62.2 (hr) 0.000	200 Safety 200 Pc	Factor 10. prosity 1.0	0				
I	nfiltratio	n Coefficie	nt Side (m,	/hr) 0.000	000						
Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)				
0.000	3450.0	0.700	0.0	1.400	0.0	2.100	0.0				
0.100	3550.0	0.800	0.0	1.500	0.0	2.200	0.0				
0.200	3650.0	0.900	0.0	1.600	0.0	2.300	0.0				
0.300	3750.0	1.000	0.0	1.700	0.0	2.400	0.0				
0.400	3850.0	1.100	0.0	1.800	0.0	2.500	0.0				
0.500	0.0	1.200	0.0	1.900	0.0						
0.600	0.0	1.300	0.0	2.000	0.0						
Hydro-Brake® Optimum Outflow Control											
		UI	it keieren sign Head (Ce MD-SHE m)	-0154-1380	2 000					
		Desid	n Flow (1/	s)		13.8					
			Flush-Fl	OTM		Calculated					
			Objecti	ve Minim	ise upstre	am storage					
			Applicati	on		Surface					
		Sı	ump Availab	le		Yes					
		I	Diameter (m	m)		154					
		Inve	ert Level (m)		60.700					
	Suggeste	atiet Pipe I A Manhole I	Diameter (m	m) m)		225					
	buggebee		Jianeccei (n			1000					
		Control	Points	Head (1	m) Flow (1/	(s)					
	De	sign Point	(Calculated	d) 2.0	00 13	3.8					
			Flush-Flo	0.5	84 13	3.7					
		_	Kick-Flo	D® 1.2	11 10).9					
1	Me	an Flow ove	r Head Rang	ge	- 12	2.0					
The hydrolog	ical calcui	lations have	e been base	d on the	Head/Disch	arge relati	onship for the				
Hydro-Brake®	Optimum as	s specified	. Should a	nother ty	pe of cont	rol device	other than a				
Hydro-Brake	Optimum® be	e utilised t	then these	storage r	outing cal	culations w	vill be				
invalidated											
Depth (m) F	low (1/s) 1	Depth (m) F	low (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)				
0 100	5 5	0 800	13 5	2 000	13 \$	3 4 000) 19.2				
0.200	11.4	1.000	12.7	2.200	14.4	4.500	20.3				
0.300	12.7	1.200	11.0	2.400	15.0	5.000	21.3				
0.400	13.4	1.400	11.6	2.600	15.0	5.500	22.3				
0.500	13.6	1.600	12.4	3.000	16.7	6.000	23.3				
0.600	13.7	1.800	13.1	3.500	18.0	6.500	24.2				
	I.		I								
		©	982-2018	Innovvz	e						
				-							

DBFL Consulting Engineers		Page 5
Ormond House	South Site	
Upper Ormond Quay	Attenuation Volume	
Dublin 7		Micro
Date 19/07/2019	Designed by JB	
File South Site Storage.srcx	Checked by BM	Diamage
Innovyze	Source Control 2018.1	

<u>Hydro-Brake® Optimum Outflow Control</u>

Depth (m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
7.000		25.1	8.	000		26.7	9	.000		28.3				
7.500		25.9	8.	500		27.5	9	.500		29.0				

Appendix C

Confirmation of feasibility from Irish Water

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

Brendan Manning Ormond House Upper Ormond Quay Dublin 7

18 April 2019

Dear Brendan Manning,

Re: Connection Reference No CDS19000027 pre-connection enquiry - Subject to contract | Contract denied

Connection for Housing Development of 600 unit(s) at Millerstown, Kilcock, Meath.

Irish Water has reviewed your pre-connection enquiry in relation to a water and wastewater connection at Millerstown, Kilcock, Meath. Based upon the details you have provided with your pre-connection enquiry and on the capacity currently available as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network can be facilitated.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact us on **1850 278 278** or **+353 1 707 2828**, **8.00am-4.30pm**, **Mon-Fri** or email **newconnections@water.ie**. For further information, visit **www.water.ie/connections**.

Yours sincerely,

M Duger

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Eamon Gallen, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Appendix D

Surface Water Permissible Outflow

PROJECT Residential De	velopment at Millerstown,	Kilcock	ЈОВ REF. р190009		
SUBJECT Surface Water	Calculations - Permissible	Site Discharge	Calc. Sheet No. 1		
Drawing ref.	Calculations by	Checked by	Date		
190009	JLB	BCM	16-Oct-19		

<u>PERMISSIBL</u>	E SURFACE WATER DISCHARGE CALCULATIONS						
Site Area							
What is the ove	erall site area?	9.00	Hectares (ha)	Site is Less than 5	0 Hectare	S	
Pre-Developmer	nt Catchment Soil Characteristics						
And the are differen		NI-	-				
Are there differ	ent soil types present on the pre-developed site?	NO					
	Catchment This refers to the entire site area	1			SOIL	SOIL Value	SPR
	Area	9.00	Hectares (ha)		1	0.15	0.10
	Drainage Group Depth to Impermeable Lavers	2			2	0.30	0.30
	Permeability Group above Impermeable Lavers	2	Class		4	0.45	0.37
	Slope ^(o)	1	Class		5	0.50	0.53
	SOIL Type	2					
	¹ SOIL Index	0.30					
Site SOIL Index	x Value	0.30	Т				
Site SPR Value		0.30	<u> </u>				
	·	0.00					
Post-Developr	nent Catchment Characteristics						
la tha davalara		No	-				
is the developh	nent divided into sub-catchments?	INO	<u> </u>				
What is the ove	erall site area for catchment?	9.00	Hectares (ha)				
	Catchment 1	Area (m ²)	Runoff Coeff.	Effective Area (m ²)	I		
	Roofs - Type 1 (Draining to gullies)	19517.5	1.00	19517.5	I		
	Roofs - Type 2 (Draining to SUDS features)	0.0	0.70	0.0	ļ		
	Green Roofs	0.0	0.60	0.0	ł		
	Roads and Footpaths - Type 1 (Draining to guilles)	17627.0	1.00	17627.0	ł		
	Paved Areas	0.0	0.80	0.0	ł		
	Permeable Paving	7250.0	0.50	3625.0	1		
	Bioretention Areas	0.0	0.70	0.0]		
	Grassed Areas	45605.5	0.00	0.0	<u> </u>		
	Include Public Open Space in Effective Catchment Area?		П				
	Effective Catchment Area	40769.5	m				
	Effective Catchment Runoff Coefficient	0.45					
Long-Term Sto	orage						
Is long-term Sto	orage provided?	Yes					
Permissible Si	ite Discharge						
What is the Sta	undard Average Appual Painfall (SAAR)?	830.0	T	-			
	(SAAK)?	830.0	1 mm	From Met Eireann, Co-o	rdinates N21	7970, E289843	
Is the overall si	te area less than 50 hectares?	Yes					
⁵ QBAR _{Rural} cal	culated for 50 ha and linearly interpolated for area of site	20.10	Litres/sec				
⁷ Cito Discharge	, , , , , , , , , , , , , , , , , , ,	00.40					
Sile Discharge) =	20.10	Litres/sec				
Notes and For	mulae						
1 SOIL index value color	lated from Flood Studies Penort - The Classification of Soils from Winter Poinfall Accordance Date (Table	4.5)					
2. SPR value calculated f	nance non noou studies report - the classification of Soils from winter rainfall Acceptance Rate (Table from GDSDS - Table 6.7.	4.J <i>J</i> .					
3. Rainfall depth for 100	year return period, 6 hour duration with additional 10% for climate change.						
4. Long-term storage Vol,	$(m^3) = Rainfall.Area.10.[(PIMP/100)(0.8.\alpha) + (1-PIMP/100)(\beta.SPR)-SPR]. (GDSDS Section 6.7.3).$						
Where long-term s	storage cannot be provided on-site due to ground conditions, Total Permissible Outflow is to be kept to QB/	AR (Rural).					
5. Total Permissible Outfl	low - QBAR (Rural) calculated in accordance with GDSDS - Regional Drainage Policies	in area Flow set	linnarhu internalat t	an comiler then Fot	00		
(volume 2 - Chapt	Let 0, i.e. QDAR(III.3/S)=0.00108X(Area) (SARK) (SUIL) - For catchments greater than 50 hectares	in area. Flow rates are l	intearly interpolated for are	eas samiler than 50hectar	85.		
o. where rotal remissio	ne outriow is ross than 2.0/s and not achievable, use 2.0 /s of closest value possible.						

7. QBAR multiplied by growth factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figure C2.

Residential Development at Millerstown, Kilcock p190009	
SUBJECTCalc. Sheet No.Surface Water Calculations - Permissible Site Discharge1	ΠEFL.
Drawing ref. Calculations by Checked by Date	
190009 JLB BCM 16-Oct-19	

PERMISSIBL	E SURFACE WATER DISCHARGE CALCULATIONS						
Site Area							
What is the over	rall site area?	6.20	Hectares (ha)	Site is Less than 5	0 Hectare	S	
Pre-Developmen	t Catchment Soil Characteristics		_				
Are there differe	ent soil types present on the pre-developed site?	No	<u> </u>				
	Catchment This refers to the entire site area	1	Ţ		SOIL	SOIL Value	SPR
	Area	6.20	Hectares (ha)		1	0.15	0.10
	Drainage Group Depth to Impermeable Lavers	2	Class		2	0.30	0.30
	Permeability Group above Impermeable Layers	2	Class		4	0.45	0.47
	Slope ^(o)	1	Class		5	0.50	0.53
	SOIL Type	2					
	'SOIL Index	0.30	1				
Site SOIL Index	Value	0.30]				
Site SPR Value		0.30]				
Post-Developm	tent Catchment Characteristics		-				
Is the developm	ent divided into sub-catchments?	No					
What is the over	rall site area for catchment?	6.20	Hectares (ha)		-		
	Catchment 1	Area (m ²)	Runoff Coeff.	Effective Area (m ²)	ļ		
	Roofs - Type 1 (Draining to gullies)	14857.0	1.00	14857.0	ł		
	Green Roofs	0.0	0.60	0.0	1		
	Roads and Footpaths - Type 1 (Draining to gullies)	14304.0	1.00	14304.0	1		
	Roads and Footpaths - Type 2 (Draining to Suds features)	0.0	0.50	0.0]		
	Paved Areas	0.0	0.80	0.0	1		
	Permeable Paving Bioretention Areas	5212.5	0.50	2606.3	+		
	Grassed Areas	27626.5	0.00	0.0	-		
					-		
	Include Public Open Space in Effective Catchment Area?						
	Effective Catchment Area	31767.3	m ²				
	Effective Catchment Runoff Coefficient	0.51					
Long-Term Sto	1200						
Long-renn oto			-				
Is long-term Sto	rage provided?	Yes					
Permissible Sit	te Discharge						
What is the Star	ndard Average Annual Rainfall (SAAR)?	830.0	mm	From Met Eireann, Co-o	rdinates N21	7970, E289843	
Is the overall site	e area less than 50 hectares?	Yes	-				
⁵ QBAR _{Rural} cald	culated for 50 ha and linearly interpolated for area of site	13.80	Litres/sec				
⁷ Site Discharge	_	13.80	Litros/200				
		13.00	Lilies/sec				
Notes and Forr	nulae						
1. SOIL index value calcula	ated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table	4.5).					
2. SPR value calculated fro	om GDSDS - Table 6.7.						
3. Rainfall depth for 100 ye	ear return period, 6 hour duration with additional 10% for climate change.						
4. Long-term storage Vol _{xs}	(m [*]) = Rainfall.Area.10.[(PIMP/100)(0.8.α)+(1-PIMP/100)(β .SPR)-SPR]. (GDSDS Section 6.7.3).	A.P.					
5. Total Permissible Outflo	orage cannot be provided on-site due to ground conditions, 10tal Permissible Outflow is to be kept to QB, w - QBAR (Rural) calculated in accordance with GDSDS - Regional Drainage Policies	MR (Rural).					
(Volume 2 - Chapte	er 6), i.e. QBAR(m3/s)=0.00108x(Area) ^{0.89} (SAAR) ^{1.17} (SOIL) ^{2.17} - For catchments greater than 50 hectares	in area. Flow rates are I	inearly interpolated for an	eas samller than 50hectar	es.		
6. Where Total Permissible	e Outflow is less than 2.01/s and not achievable, use 2.0 l/s or closest value possible.						
7. QBAR multiplied by grow	wth factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figu	ire C2.					

Appendix E

Surface Water Network Calculations

DBFL Consulting Engineers	Page 1											
Ormond House												
Upper Ormond Quay												
Date 17/10/2019 14.05	Designed by butleri											
File SW 1.mdx	Checked by											
 Innovyze	Network 2018.1											
STORM SEWER DESIGN	by the Modified Rational Method											
Desigr	n Criteria for SW_1											
Pipe Sizes STA	ANDARD Manhole Sizes STANDARD											
FSR Rainfall	Model - Scotland and Ireland											
Return Period (years)	5 PIMP (%) 100											
Ratio R	13.400Add Flow / Climate Change (%)200.279Minimum Backdrop Height (m)0.250											
Maximum Rainfall (mm/hr)	100 Maximum Backdrop Height (m) 2.000 30 Min Design Depth for Optimisation (m) 1.200											
Foul Sewage (l/s/ha)	0.000 Min Vel for Auto Design only (m/s) 1.00											
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X) 500											
Design	ed with Level Soffits											
Time Ar	rea Diagram for SW_1											
Time Area Time Area Time Area Time Area												
0-4 0.239 4-	8 2.242 8-12 1.498 12-16 0.098											
Total Area	Contributing (ha) = 4.077											
Total Pip	pe Volume (m³) = 269.123											
<u>Network</u>	<u>Design Table for SW_1</u>											
PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (mi	.E. Base k HYD DIA Section Type Auto ins) Flow (1/s) (mm) SECT (mm) Design											
S1 000 0 255 0 090 115 7 0 022 1	5.00 0.0.600 o 225 Pipe/Conduit 6											
s1.000 9.235 0.080 113.7 0.022 s s1.001 9.800 0.120 81.7 0.017 (0.00 0.0 0.600 o 225 Pipe/Conduit 💣											
S1.002 12.413 0.150 82.8 0.027 (0.00 0.0 0.600 o 225 Pipe/Conduit											
S1.003 18.832 0.200 84.2 0.019 (S1.004 13.443 0.100 134.4 0.053 (0.00 0.0 0.600 o 225 Pipe/Conduit 💣											
S1.005 17.532 0.210 83.5 0.028 (0.00 0.0 0.600 o 225 Pipe/Conduit 💣											
S1.006 22.894 0.340 67.3 0.045 (0.00 0.0 0.600 o 225 Pipe/Conduit 💣											
Netw	ork Results Table											
PN Rain T.C. $US/IL \Sigma I$.	Area Σ Base Foul Add Flow Vel Cap Flow											
(mm/hr) (mins) (m) (h	a) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)											
S1.000 57.59 5.13 68.375 0	.022 0.0 0.0 0.7 1.21 48.3 4.0											
S1.001 57.12 5.24 68.295 0 S1.002 56.54 5.38 68.175 0	.039 0.0 0.0 1.2 1.45 57.6 7.2 .066 0.0 0.0 2.0 1.44 57.2 12.2											
s1.003 55.76 5.58 68.025 0	.085 0.0 0.0 2.6 1.43 56.7 15.5											
S1.004 55.01 5.78 67.825 0	.138 0.0 0.0 4.1 1.13 44.8 24.7											
S1.005 54.26 5.98 67.725 0 S1.006 53.42 6.22 67.515 0	.100 0.0 0.0 4.9 1.43 56.9 29.3 .211 0.0 0.0 6.1 1.60 63.5 36.7											
	0.0.0010 -											
©19	82-2018 Innovyze											

DBFL Co	onsulti	ng Er	nginee	ers							Pag	re 2
Ormond	House		- 5									
Upper (rmond	011237										
Dublin	7	Quay										
	1	10 1.	4.05		Da		1				— MI	C(O
Date I	//10/20	119 14	1:05		Des	signed by	DUTIE	erj			Dr	ainage
File SV	V_1.mdx	٢			Che	ecked by						
Innovyz	ze				Ne	twork 2018	3.1					
					1		c	1				
				<u>Networ</u>	<u>k Desi</u>	<u>lgn Table</u>	<u>tor S</u>	<u>w_1</u>				
PN	Length	Fall	Slope	T.Area	Τ.Ε.	Base	k	HYD	DTA	Secti	on Type	- Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Design
												-
S1.007	17.488	0.100	174.9	0.060	0.00	0.0	0.600	0	300	Pipe/	Conduit	ີ 🔮
SI.008	10 995	0.151	100./ 72.1	0.041	0.00	0.0	0.600	0	300	Pipe/	Conduit	- 5
51.005	10.005	0.101	12.1	0.000	0.00	0.0	0.000	0	500	ттрел	CONGUL	- 🛄
s2.000	10.935	0.080	136.7	0.043	5.00	0.0	0.600	0	225	Pipe/	Conduit	- 🔒
S2.001	13.171	0.120	109.8	0.029	0.00	0.0	0.600	0	225	Pipe/	Conduit	- 💣
S2.002	14.991	0.100	149.9	0.047	0.00	0.0	0.600	0	225	Pipe/	Conduit	່ 💣
S2.003	13.235	0.100	132.4	0.028	0.00	0.0	0.600	0	225	Pipe/	Conduit	- f
52.004	17.334	0.102	169.9	0.025	0.00	0.0	0.600	0	223	Pipe/	Conduli	c 🗗
S1.010	26.329	0.148	177.9	0.060	0.00	0.0	0.600	0	375	Pipe/	Conduit	t 🔒
S1.011	28.921	0.240	120.5	0.095	0.00	0.0	0.600	0	375	Pipe/	Conduit	· ě
S1.012	20.098	0.110	182.7	0.031	0.00	0.0	0.600	0	375	Pipe/	Conduit	ំ 💣
~~~~~	0 400	0 1 0 0	04.0	0 0 0 0	F 0.0	0.0	0 600		005		a 1 1	
S3.000	9.490	0.100	94.9	0.069	5.00	0.0	0.600	0	225	Pipe/	Conduit	- <del>0</del>
S3.001	31.642	0.330	95.9	0.003	0.00	0.0	0.600	0	225	Pipe/	Conduit	- <b>0</b>
s3.003	21.209	0.190	111.6	0.060	0.00	0.0	0.600	0	225	Pipe/	Conduit	τ <mark>υ</mark> τ <b>μ</b> Ω
S3.004	21.831	0.220	99.2	0.070	0.00	0.0	0.600	0	225	Pipe/	Conduit	- <mark>.</mark>
S3.005	34.393	0.330	104.2	0.090	0.00	0.0	0.600	0	300	Pipe/	Conduit	ំ 💣
01 012	10 170	0 000	146 4	0 014	0 00	0 0	0 600		4 5 0	Dima	Conducid	
51.015	13.1/3	0.090	140.4	0.014	0.00	0.0	0.600	0	450	Pibe/	Conduli	- 😈
				Ne	twork	Results I	able					
PN	I Ra	in 7	r.c. 1	US/IL Σ	I.Area	Σ Base	Foul	Add 1	Flow	Vel	Cap	Flow
	(mm/	hr) (n	ains)	(m)	(ha)	Flow (l/s)	(l/s)	(1/	s)	(m/s)	(1/s)	(1/s)
S1.0	07 52	.58	6.47 6	57.100	0.272	0.0	0.0		7.7	1.19	83.8	46.4
S1.0	08 52	.05	6.63 6	57.000	0.312	0.0	0.0		8.8	1.57	110.7	52.8
S1.0	09 51	.73	6.73 6	56.849	0.312	0.0	0.0		8.8	1.85	131.1	52.8
		1.1.2	E 1 C (		0 040	0.0	0 0		1 4	1 1 0		0 1
SZ.0	100 57 101 56	.43	5 3/ 4	57 195	0.043	0.0	0.0		⊥.4 2 2	1.12 1.25	44.4 19 6	ö.⊥ 13.⊿
S2.0	102 55	.79	5.57 6	57.075	0.120	0.0	0.0		2.2 3.6	1.07	42.4	21.7
s2.0	03 55	.05	5.77 €	56.975	0.148	0.0	0.0		4.4	1.13	45.1	26.5
S2.0	04 54	.00	6.06 6	56.875	0.173	0.0	0.0		5.1	1.00	39.8	30.4

©1982-2018 Innovyze

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.546

0.642

0.672

0.069

0.072

0.162

0.223

0.293

0.383

1.069

15.0 1.36 149.7 90.0

17.3 1.65 182.2 103.9

17.9 1.34 147.7 107.4

2.21.3453.413.02.21.3653.913.34.91.3453.129.3

6.6 1.24 49.2 39.4

8.5 1.31 52.2 50.8

10.8 1.54 108.8 64.8

28.2 1.68 266.9 169.4

7.05 66.623

7.34 66.475

7.59 66.235

5.12 67.575

5.27 67.475

5.66 67.345

5.95 67.015

6.22 66.825

6.60 66.530

7.73 66.050

S1.010

S1.011

S1.012

S3.000

S3.001

S3.002

S3.003

S3.004

S3.005

S1.013

50.72

49.85

49.14

57.62

57.01

55.45

54.39

53.41

52.16

48.77

DDDI G											De	
DRFT CC	DISULTI	LNG EI	igine	ers							Pag	je s
Ormond	House											
Upper C	rmond	Quay										
Dublin	7										N/	icco
Date 17	1/10/20	)19 14	4:05		De	signed by	butle	ri				
Filo SM	,, 1 1 mdx	,			Ch	acked by						ainage
TITE SM		2				ecked by	. 1					
Innovyz	ze				Ne	twork 2018	3.1					
				<u>Networ</u>	k Desi	lgn Table	for S	<u>W_1</u>				
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD I	DIA	Secti	on Typ	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT (	(mm)			Design
S4.000	44.851	0.264	169.9	0.164	5.00	0.0	0.600	0	225	Pipe/	Condui	t 🔐
S4.001	25.871	0.152	170.2	2 0.023	0.00	0.0	0.600	0	225	Pipe/	Condui	t 🖌
S4.002	10.231	0.071	144.1	0.012	0.00	0.0	0.600	0	225	Pipe/	Condui	t 💣
												-
S1.014	15.060	0.218	69.1	0.040	0.00	0.0	0.600	0	450	Pipe/	Condui	t 💣
S1.015	16.053	0.171	93.9	0.030	0.00	0.0	0.600	0	450	Pipe/	Condui	t 💣
S1.016	30.569	0.382	80.0	0.092	0.00	0.0	0.600	0	450	Pipe/	Condui	t 💣
SI.01/	12.220	0.1/6	80.1	0.019	0.00	0.0	0.600	0	450	Pipe/	Condui	t 🗗
S1.018	13.229	0.100	60.2	0.043	0.00	0.0	0.600	0	450	Pipe/	Condui	L 💇
51.019	20.402	0.420	00.	0.017	0.00	0.0	0.000	0	450	rtbe/	Condui	ີ 😈 ັ
\$5,000	23.010	0.135	170.4	0.064	5.00	0.0	0.600	0	225	Pipe/	Condui	t a
S5.001	14.671	0.086	170.6	5 0.000	0.00	0.0	0.600	0	225	Pipe/	Condui	t 🔐
S5.002	10.532	0.062	169.9	0.000	0.00	0.0	0.600	0	225	Pipe/	Condui	t 🖌
S6.000	52.341	0.300	174.5	0.225	5.00	0.0	0.600	0	300	Pipe/	Condui	t 💣
S6.001	21.457	0.250	85.8	0.066	0.00	0.0	0.600	0	300	Pipe/	Condui	t 💣
S6.002	18.809	0.450	41.8	3 0.052	0.00	0.0	0.600	0	300	Pipe/	Condui	t 💣
S6.003	7.126	0.110	64.8	3 0.011	0.00	0.0	0.600	0	300	Pipe/	Condui	t 🗗
95 003	10 357	0 032	323 -	0 014	0 00	0 0	0 600	0	375	Pine	Condui	+ _0
55.005	10.337	0.052	525.	0.014	0.00	0.0	0.000	0	575	ттре/	COllaur	
				Ne	etwork	Results T	'able					
PN	Ra	in 1	r.c.	US/IL Σ	I.Area	$\Sigma$ Base	Foul	Add Fl	Low	Vel	Cap	Flow
	(mm/	hr) (n	nins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s	)	(m/s)	(l/s)	(1/s)
S4 0	00 55	.13	5.75	65.525	0.164	0 0	0 0	2	1.9	1.00	39 R	29.4
S4.0	01 53	.57	6.18	65.261	0.187	0.0	0.0		5.4	1.00	39.7	32.6
S4.0	02 53	.03	6.34	65.109	0.199	0.0	0.0	5	5.7	1.09	43.2	34.3
S1.0	14 48	.49	7.83	64.813	1.308	0.0	0.0	34	1.3	2.45	389.5	206.1
S1.0	15 48	.15	7.96	64.595	1.338	0.0	0.0	34	1.9	2.10	333.8	209.3
S1.0	16 47	.56	8.18	64.424	1.430	0.0	0.0	36	5.8	2.27	361.7	221.0
S1.0	17 47	.29	8.28	64.042	1.448	0.0	0.0	37	7.1	2.27	361.5	222.6
S1.0	18 47	.05	8.38	63.866	1.492	0.0	0.0	38	3.0	2.27	361.4	228.1
SI.0	19 46	.5/	ð.5/	o3./U⊥	1.508	0.0	0.0	35	5.0	2.50	396.8	228.3
95 0	00 56	53	5 2 2	67 325	0 064	0 0	0 0	-	2 0	1 00	30 7	11 7
S5.0	01 55	58	5 63	67 190	0.004	0.0	0.0	2	2.0	1 00	39.7	11 7
s5.0	02 54	.92	5.80	67.104	0.064	0.0	0.0	2	2.0	1.00	39.8	11.7
				-				_	-			
S6.0	00 55	.18	5.73	68.750	0.225	0.0	0.0	6	6.7	1.19	83.9	40.3
S6.0	01 54	.40	5.95	68.450	0.290	0.0	0.0	8	3.6	1.70	120.0	51.3
S6.0	02 53	.94	6.07	68.200	0.342	0.0	0.0	10	0.0	2.44	172.4	59.9
S6.0	03 53	.72	6.13	67.750	0.353	0.0	0.0	10	0.3	1.96	138.3	61.6

0.0 0.0

12.4 1.00 110.6 74.4

s5.003 53.13 6.31 66.892

0.431

©1982-2018 Innovyze

DBFL Co	nsulti	ing Er	iginee	rs							Pag	e 4
Ormond	House											
Upper C	rmond	Quay										
Dublin	7										Mi	
Date 17	//10/20	)19 14	1:05		De	signed by	butle	erj				
File SV	₹ 1.mdx	ζ			Ch	ecked by	DIO	alliage				
Innovyz	 2e				Ne	twork 2018	3.1					
								4				
				Networ	<u>k Des</u>	ign Table	<u>for S</u>	<u>w_1</u>				
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Secti	on Type	a Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design
S5.004	17.800	0.055	323.6	0.024	0.00	0.0	0.600	0	375	Pipe/	Conduit	: <b>"</b> •
S5.005	32.455	0.662	49.0	0.055	0.00	0.0	0.600	0	375	Pipe/	Conduit	: <mark>ð</mark>
S5.006	28.349	0.741	38.3	0.011	0.00	0.0	0.600	0	375	Pipe/	Conduit	: Ū
s7.000	12.291	0.300	41.0	0.056	5.00	0.0	0.600	0	225	Pipe/	Conduit	: 🔒
S7.001	27.319	0.700	39.0	0.042	0.00	0.0	0.600	0	225	Pipe/	Conduit	: 💣
\$7.002	10.522	0.223	47.2	0.000	0.00	0.0	0.600	0	225	Pipe/	Conduit	: Ū
S5.007	29.469	0.690	42.7	0.016	0.00	0.0	0.600	0	375	Pipe/	Conduit	: 💣
S8.000	24.431	0.190	128.6	0.068	5.00	0.0	0.600	0	225	Pipe/	Conduit	: 🔒
S8.001	22.129	0.130	170.2	0.066	0.00	0.0	0.600	0	225	Pipe/	Conduit	: 💑 :
S8.002	26.963	0.159	169.6	0.024	0.00	0.0	0.600	0	225	Pipe/	Conduit	់ 🥳
S8.003	20.598	0.121	170.2	0.050	0.00	0.0	0.600	0	225	Pipe/	Conduit	: 💣
S8.004	45.830	0.187	245.1	0.052	0.00	0.0	0.600	0	300	Pipe/	Conduit	ំ 💣
S8.005	8.867	0.036	246.3	0.006	0.00	0.0	0.600	0	300	Pipe/	Conduit	ਂ 🕑
S8.006	10.991	0.045	244.2	0.006	0.00	0.0	0.600	0	300	Pipe/	Conduit	່ 🗗
S5.008	12.368	0.031	405.0	0.007	0.00	0.0	0.600	0	450	Pipe/	Conduit	: 💣
S9.000	15.009	0.088	170.6	0.050	5.00	0.0	0.600	0	225	Pipe/	Conduit	: 🔒
S9.001	12.910	0.076	169.9	0.012	0.00	0.0	0.600	0	225	Pipe/	Conduit	: 💣
				Ne	twork	Results I	<u>able</u>					
		_							_	_		_
PN	Rai (mm/	in 1 'hr) (1	'.C. ( mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (1/s)	Foul (l/s)	Add 1 (1/	Flow 's)	Vel (m/s)	Cap (1/s)	Flow (1/s)
CE O			6 60 6		0 4 5 4		0.0		10 0	1 00	110 C	77 0
55.0	04 32		0.00 6	0.000	0.454	0.0	0.0		12.0	1.00	0.UII	, , . 0

	(11117)	(mins)	(111)	(IIA)	FIOW	(1/5)	(1/5)	(1/5)	(111/5)	(1/5)	(1/5)	
S5.004	52.14	6.60	66.860	0.454		0.0	0.0	12.8	1.00	110.6	77.0	
S5.005	51.47	6.81	66.805	0.509		0.0	0.0	14.2	2.59	286.4	85.2	
S5.006	50.97	6.97	66.143	0.521		0.0	0.0	14.4	2.94	324.4	86.2	
S7.000	57.70	5.10	66.775	0.056		0.0	0.0	1.7	2.05	81.5	10.5	
S7.001	56.81	5.32	66.475	0.098		0.0	0.0	3.0	2.10	83.5	18.1	
S7.002	56.44	5.41	65.775	0.098		0.0	0.0	3.0	1.91	75.9	18.1	
S5.007	50.43	7.15	65.402	0.635		0.0	0.0	17.3	2.78	307.0	104.0	
S8.000	56.66	5.35	64.275	0.068		0.0	0.0	2.1	1.15	45.8	12.4	
S8.001	55.22	5.72	64.085	0.134		0.0	0.0	4.0	1.00	39.7	24.0	
S8.002	53.59	6.17	63.955	0.158		0.0	0.0	4.6	1.00	39.8	27.5	
S8.003	52.43	6.52	63.796	0.208		0.0	0.0	5.9	1.00	39.7	35.4	
S8.004	50.04	7.28	63.600	0.260		0.0	0.0	7.0	1.00	70.7	42.2	
S8.005	49.61	7.43	63.413	0.265		0.0	0.0	7.1	1.00	70.5	42.8	
S8.006	49.09	7.61	63.377	0.271		0.0	0.0	7.2	1.00	70.8	43.3	
S5.008	48.52	7.82	63.182	0.913		0.0	0.0	24.0	1.00	159.7	144.0	
S9.000	57.07	5.25	68.675	0.050		0.0	0.0	1.5	1.00	39.7	9.2	
S9.001	56.21	5.47	68.587	0.061		0.0	0.0	1.9	1.00	39.8	11.2	
				©1982-2	018 3	Innov	yze					

DBFL Co	nsulti	ng En	ginee	rs								Page	5
Ormond	House												
Upper O	rmond	Quay											
Dublin	7											Mic	
Date 17	/10/20	19 14	:05		Des	signe	d bv	butle	ri				IU
File SW	1 mdv				Che	ackad	by					Dra	Inage
					Not		2010	1					
TIIIOvyz	e				Net	WOIK	2010	• 1					
				<u>Networ</u>	k Desi	.gn Ta	able	for S	W_1				
DN	Iongth	F-11	Slope	T Area	<b></b>	ъ-		ŀr	חעש	גדת	Soction	Time	Auto
EN	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	Section	туре	Design
		. ,	. ,				( ) = )			. ,			
S9.002	16.039	0.094	170.6	0.049	0.00		0.0	0.600	0	225	Pipe/Co	nduit	ď
\$9.003	10.601	0.062	171.0	0.036	0.00		0.0	0.600	0	225	Pipe/Co	nduit	್
\$9.004	22.545	0.1/9	125.9	0.0/4	0.00		0.0	0.600	0	225	Pipe/Co	nduit	, de la companya de l
\$9.005	14.425	0.200	/5.1	0.019	0.00		0.0	0.600	0	225	Pipe/Co	nduit	್ಲ್
\$9.006	14.435	0.220	65.6	0.035	0.00		0.0	0.600	0	225	Pipe/Co	nduit	ď
\$9.007	19.328	0.330		0.020	0.00		0.0	0.600	0	220	Pipe/Co	nduit	ď
59.008	20.024	0.450	22 4	0.083	0.00		0.0	0.600	0	225	Pipe/Co	nduit	<b>U</b>
59.009	29.134	1 200	25.4	0.031	0.00		0.0	0.000	0	225	Pipe/Co	nduit	Ŭ
59.010	30.230	1.200	23.2	0.045	0.00		0.0	0.000	0	223	ribe/co	naurc	Ū,
\$5.009	14.247	0.030	482.3	0.005	0.00		0.0	0.600	0	525	Pipe/Co	nduit	ď
s10.000	17.318	0.102	169.8	0.102	5.00		0.0	0.600	0	225	Pipe/Co	nduit	a
S10.001	19.643	0.116	169.3	0.000	0.00		0.0	0.600	0	225	Pipe/Co	nduit	- A
S10.002	14.649	0.086	170.3	0.000	0.00		0.0	0.600	0	225	Pipe/Co	nduit	ě
S10.003	24.118	0.224	107.6	0.000	0.00		0.0	0.600	0	225	Pipe/Co	nduit	ď
\$5.010	75 455	0 128	590 0	0 027	0 00		0 0	0 600	0	600	Pine/Co	nduit	_
s5.011	5.260	0.009	590.0	0.000	0.00		0.0	0.600	0	600	Pipe/Co	nduit	ď
011 000	24 250	1 050	20 7	0 174	E 0.0		0 0	0 600		225	Dine /Ce		-
S11.000	7 530	1.050	32.7 25 1	0.1/4	5.00		0.0	0.600	0	225	Pipe/Co	nduit	<b>U</b>
511.001	1.559	0.500	23.1	0.010	0.00		0.0	0.000	0	223	гтрелсо	nuurt	•
				Ne	twork	Resu	lts T	able					
	_					_	_			_			

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)	
S9.002	55.18	5.73	68.511	0.110	0.0	0.0	3.3	1.00	39.7	19.8	
S9.003	54.52	5.91	68.417	0.146	0.0	0.0	4.3	1.00	39.6	25.9	
S9.004	53.38	6.23	68.355	0.220	0.0	0.0	6.4	1.16	46.3	38.2	
S9.005	52.81	6.40	68.176	0.239	0.0	0.0	6.8	1.51	60.1	41.1	
S9.006	52.32	6.55	67.976	0.274	0.0	0.0	7.8	1.62	64.3	46.6	
S9.007	51.71	6.74	67.756	0.295	0.0	0.0	8.3	1.71	68.1	49.5	
S9.008	50.80	7.03	67.426	0.378	0.0	0.0	10.4	1.65	65.4	62.4	
S9.009	50.17	7.24	66.976	0.429	0.0	0.0	11.7	2.31	91.7	70.0	
S9.010	49.61	7.43	66.076	0.474	0.0	0.0	12.7	2.62	104.1	76.5	
S5.009	47.90	8.05	63.076	1.393	0.0	0.0	36.1	1.01	219.3	216.8	
S10.000	56.92	5.29	63.875	0.102	0.0	0.0	3.1	1.00	39.8	18.8	
S10.001	55.63	5.62	63.773	0.102	0.0	0.0	3.1	1.00	39.8	18.8	
S10.002	54.71	5.86	63.657	0.102	0.0	0.0	3.1	1.00	39.7	18.8	
S10.003	53.57	6.18	63.571	0.102	0.0	0.0	3.1	1.26	50.1	18.8	
S5.010	44.83	9.31	62.972	1.522	0.0	0.0	36.9	1.00	281.4	221.7	
S5.011	44.63	9.40	62.844	1.522	0.0	0.0	36.9	1.00	281.4	221.7	
S11.000	57.08	5.25	66.625	0.174	0.0	0.0	5.4	2.30	91.3	32.4	
S11.001	56.88	5.30	65.575	0.184	0.0	0.0	5.7	2.62	104.2	34.0	
				©1982-2	018 Innov	vze					

DBFL Co	nsulti	ng En	ginee	rs							Page	e 6			
Ormond	House														
Upper O	rmond	Quay													
Dublin	7										Mid				
Date 17	/10/20	19 14	:05		Des	signe	d by	butle	rj						
File SW	_1.mdx				Che	ecked		יוו ומקפ							
Innovyz	e				Net	work	2018	.1							
Network Design Table for SW 1															
	<u>Network Design Table for SW_1</u>														
PN Length Fall Slope I.Area T.E. Base k HYD DIA Section T															
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design			
S11.002	14.271	0.500	28.5	0.014	0.00		0.0	0.600	0	225	Pipe/Conduit	ø			
s11.003	9.911	0.400	24.8	0.037	0.00		0.0	0.600	0	225	Pipe/Conduit	· •			
S11.004	5.694	0.200	28.5	0.009	0.00		0.0	0.600	0	225	Pipe/Conduit	÷ 💑			
\$5.012	6.067	0.010	590.0	0.106	0.00		0.0	0.600	0	600	Pipe/Conduit				
S5.013	60.838	0.103	590.7	0.000	0.00		0.0	0.600	0	600	Pipe/Conduit	. <b>.</b>			
C12 000	20 416	1 0 0 0	22.0	0 0 0 0 0	E 0.0		0 0	0 600		225	Dine (Conduit				
S12.000	5 270	1.230	32.0	0.082	5.00		0.0	0.600	0	225	Pipe/Conduit	- <b>1</b>			
512.001	5.270	0.195	27.0	0.000	0.00		0.0	0.000	0	223	Pipe/conduit	- Ū			
S5.014	32.586	0.055	592.5	0.000	0.00		0.0	0.600	0	600	Pipe/Conduit	: 💣			
\$13 000	35 198	0 207	170 0	0 059	5 00		0 0	0 600	0	225	Pine/Conduit	- <u>a</u>			
S13 001	30 520	0.180	169 6	0.034	0 00		0.0	0.600	0	225	Pipe/Conduit	·			
\$13,002	17.017	0.100	170.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	· U			
s13.003	22.604	0.286	79.0	0.025	0.00		0.0	0.600	0	225	Pipe/Conduit	· •			
											1	•			
S1.020	54.770	0.061	900.0	0.063	0.00		0.0	0.600	0	900	Pipe/Conduit	: 💣			
S14 000	17 920	0 200	89 E	0 054	5 00		0 0	0 600	0	225	Pine/Conduit	- <u>a</u>			
\$14 001	£ 838	0.200	76 0	0.004	0 00		0.0	0.600	0	225	Pine/Conduit	· _			
517.001	0.000	0.000	/0.0	0.000	0.00		0.0	0.000	0	220	T The' country	- 🕛			

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S11.002	56.49	5.39	65.275	0.198	0.0	0.0	6.1	2.46	97.7	36.4
S11.003	56.25	5.46	64.775	0.235	0.0	0.0	7.2	2.64	104.9	43.0
S11.004	56.09	5.50	64.375	0.245	0.0	0.0	7.4	2.46	97.9	44.6
s5.012	44.41	9.50	62.835	1.873	0.0	0.0	45.0	1.00	281.4	270.3
S5.013	42.32	10.52	62.825	1.873	0.0	0.0	45.0	0.99	281.3	270.3
S12.000	56.94	5.28	65.000	0.082	0.0	0.0	2.5	2.32	92.2	15.2
S12.001	56.80	5.32	63.770	0.082	0.0	0.0	2.5	2.53	100.5	15.2
S5.014	41.29	11.07	62.722	1.955	0.0	0.0	45.0	0.99	280.8	270.3
S13.000	55.74	5.59	63.815	0.059	0.0	0.0	1.8	1.00	39.8	10.6
S13.001	53.86	6.09	63.608	0.093	0.0	0.0	2.7	1.00	39.8	16.2
S13.002	52.88	6.38	63.428	0.093	0.0	0.0	2.7	1.00	39.7	16.2
S13.003	52.03	6.63	63.328	0.118	0.0	0.0	3.3	1.47	58.6	19.9
S1.020	39.76	11.95	62.367	3.644	0.0	0.0	78.5	1.04	659.2	470.9
S14.000	57.22	5.22	64.975	0.054	0.0	0.0	1.7	1.38	54.9	10.0
S14.001	56.91	5.29	64.775	0.054	0.0	0.0	1.7	1.50	59.7	10.0
				©1982-2	018 Innovy	ze				

DBFL Co	nsulti	ng En	ginee	rs							Page	e 7	
Ormond	House												
Upper O	rmond	Quay											
Dublin	7										Mi		
Date 17	/10/20	19 14	:05		Des	signe	d by	butle	rj				
File SW	1.mdx				Che	ecked	by					III Iaye	
Innovyz	e				Net	work	2018	.1					
Network Design Table for SW_1													
MELWOIK DESIGN TABLE TOT DWT													
PN	Section Type	a Auto											
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design	
S15.000	19.662	0.450	43.7	0.051	5.00		0.0	0.600	0	225	Pipe/Conduit	: A	
S15.001	8.044	0.090	89.4	0.034	0.00		0.0	0.600	0	225	Pipe/Conduit	: 💣	
												-	
S14.002	27.514	0.660	41.7	0.044	0.00		0.0	0.600	0	225	Pipe/Conduit	: 🔮	
\$14.003	13.528	0.150	90.2	0.028	0.00		0.0	0.600	0	225	Pipe/Conduit	ਂ 🗗	
S14.004	21.213	0.200	106.1	0.060	0.00		0.0	0.600	0	225	Pipe/Conduit	ະ 🗗	
S14.005	16.924	0.144	117.5	0.028	0.00		0.0	0.600	0	300	Pipe/Conduit	: <b>d</b>	
S16.000	24.405	0.144	169.5	0.011	5.00		0.0	0.600	0	225	Pipe/Conduit	: <b>n</b>	
S14.006	20.318	0.083	244.8	0.078	0.00		0.0	0.600	0	300	Pipe/Conduit	: 🔐	
S14.007	7.114	0.029	245.3	0.004	0.00		0.0	0.600	0	300	Pipe/Conduit	: 💣	
S14.008	8.375	0.026	325.0	0.040	0.00		0.0	0.600	0	375	Pipe/Conduit	: 💣	
S1 021	58 270	0 065	900 0	0 000	0 00		0 0	0 600	0	900	Pine/Conduit		
g1 022	30.707	0.000	900.0	0.000	0.00		0.0	0.000	0	900	Pipe/Conduit		
S1.022	3 997	0.034	900.0	0.000	0.00		0.0	0.000	0	900	Pipe/Conduit		
S1.023	1 556	0.004	900.0	0.000	0.00		0.0	0.600	0	900	Pipe/Conduit	· 🐨	
g1 025	9 /01	0.000	225 0	0.000	0.00		0.0	0.000	0	200	Pipe/Conduit	· 🐨	
51.025	0.491	0.050	223.0	0.000	0.00		0.0	0.000	0	900	ripe/conduit	- 😈	
						-							

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
s15.000	57.43	5.17	65.225	0.051	0.0	0.0	1.6	1.98	78.9	9.6
S15.001	57.03	5.26	64.775	0.085	0.0	0.0	2.6	1.38	55.0	15.8
S14.002	56.01	5.52	64.685	0.184	0.0	0.0	5.6	2.03	80.8	33.4
S14.003	55.38	5.68	64.025	0.211	0.0	0.0	6.3	1.38	54.8	38.0
S14.004	54.35	5.96	63.875	0.271	0.0	0.0	8.0	1.27	50.5	47.9
S14.005	53.65	6.15	63.600	0.299	0.0	0.0	8.7	1.45	102.4	52.2
S16.000	56.45	5.41	63.675	0.011	0.0	0.0	0.3	1.00	39.8	2.1
S14.006	52.50	6.49	63.456	0.389	0.0	0.0	11.1	1.00	70.7	66.3
S14.007	52.11	6.61	63.373	0.393	0.0	0.0	11.1	1.00	70.6	66.5
S14.008	51.66	6.75	63.269	0.433	0.0	0.0	12.1	1.00	110.4	72.7
S1.021	38.28	12.89	62.306	4.077	0.0	0.0	84.5	1.04	659.2	507.2
S1.022	37.55	13.38	62.241	4.077	0.0	0.0	84.5	1.04	659.2	507.2
S1.023	37.46	13.45	62.207	4.077	0.0	0.0	84.5	1.04	659.2	507.2
S1.024	37.36	13.52	62.203	4.077	0.0	0.0	84.5	1.04	659.2	507.2
S1.025	37.26	13.59	62.198	4.077	0.0	0.0	84.5	2.08	1326.3	507.2

©1982-2018 Innovyze

Crmond Rouse Upper Ormond Quay Lublin 7 Date 17/10/2019 14:05 File SM_1.mdx Innovyze Network 2018.1 Free Flowing Outfall Details for SM_1 Outfall Outfall C. Level M. En D.L W Pipe Number Name (m) (m) 1. Level (m) (m) (m) S1.025 SSA0 64.000 62.160 0.000 0 0 S1.025 SSA0 64.000 62.160 0.000 0 0	DBFL Consulting Engineers		Page 8
Upper Ormond Quay       Designed by butlerj       Decoded by         Intoryza       Network 2018.1         Dotfall Cutfall Cutralls for SM I         Dotfall Cutfall C. Level I. Level Min Charlon (m)         Outfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall C. Level I. Level (m) for SM I         Dotfall Cutfall Cutfall Cut	Ormond House		
Dablin 7       Chacked by         Date 17/10/2019 14:05       Chacked by         Inhovyze       Network 2018.1         Gutfall Outfall Details for SK 1         Chacked by         Outfall Outfall C. Level I. Level Min D. J. W         Dutfall Outfall C. Level I. Level Min D. J. W         Outfall Outfall C. Level I. Level Min D. J. W         Outfall Outfall C. Level I. Level Min D. J. W         Outfall Outfall Outfall C. Level I. Level Min D. J. W         Outfall	Upper Ormond Quay		
Date 17/10/2019 14:05       Designed by builarj Chacked by         Innovyza       Natura 2018.1         Income Outfall Details for SW 1         Outfall Outfall C. Level 1. Level Min D.L W Fige Number Name (m) I. Level (m) (m) (m)         SEAD 64.000 62.160 0.000 0 0         Outfall Section C. Level 1. Level Min D.L W Fige Number Name (m) I. Level (m) (m)         SEAD 64.000 62.160 0.000 0 0	Dublin 7		Micro
<pre>rine sw_1.mdx</pre>	Date 17/10/2019 14:05	Designed by butlerj	Drainago
Innovyze Network 2018.1 Free Flowing Outfall Details for SW_1 Outfall Outfall C. Level I. Level Min D.L M pipe Number Name (n) (n) I. Level (mm) (mm) (m) S1.025 SSA0 64.000 62.160 0.000 0 0 S1.025 SSA0 64.000 62.160 0.000 0 0 S1.025 SSA0 64.000 62.160 0.000 0 S1.025 SSA0 64.000 62.160 0 S1.025 SSA0 64.000 62.160 0 S1.025 SSA0 64.000 62.160 0 S1.025 SSA0 64.000 0 S1.025 SSA0 64.000 62.160 0 S1.025 SSA0 64.000 62.160 0 S1.025 SSA0 64.000	File SW_1.mdx	Checked by	Diamage
Pre Floring Outfall Details for SM_1         Outfall Outfall C. Level 1. Level Min D.L M         Die Number Name (n) (n) 1. Level (m) (m)	Innovyze	Network 2018.1	
<pre>LTCVILLI LOUTAIL POETAIL FOR NMIL D. N. M. Dutfall Outfall C. Level I. Level Min D. N. M. Dut S. Name (n) (n) 2. Level (m) (m) Dut S. NAME 64.000 62.160 0.000 0 0 0 0000 0000 0000 0000 00 0000 0000 0000 0000 00 0000 0000 00 0000 0000 00 0000 0000 00 0000 0000 00 0000 0000 00 0000 00 00000 00 000000</pre>	, .		
Outfall         Outfall C. Level I. Level Min D,L W           Pipe Number         Name         (n)         1. Level (mm) (mm)           S1.025         SSA0         64.000         62.160         0.000         0         0	<u>Free Flowing</u>	Outfall Details for SW_1	
Dige Number         Name         (m)         (m)         Level (mm)         (m)           S1.025         SSA0         64.000         62.160         0.000         0         0	Outfall Outfall C	Level I Level Min D L. W	
(n) 31.025 5580 64.000 62.160 0.000 0 0	Pipe Number Name	(m) (m) I. Level (mm) (mm)	
01982-2018 Innovyze		(m)	
01982-2018 Innovyze	S1 025 SSA0	64 000 62 160 0 000 0 0	
01982-2018 Innovuze	51.025 5540	04.000 02.100 0.000 0 0	
01982-2018 Innovze			
81982-2018 Innovnze			
0192-2018 Innovze			
0192-2018 Innovyze			
0182-2018 Ιπρονχε			
©192-2018 Innovze			
0182-2018 Ιπρονχε			
0192-2018 Innovze			
0192-2018 Innovyze			
01982-2018 Innovyze			
01982-2018 Innovyze			
01982-2018 Innovyze			
01982-2018 Innovyze			
01982-2018 Innovyze			
©1982-2018 Innovyze			
	©198	32-2018 Innovyze	

DBFL Consulting Engineers		Page 9
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 17/10/2019 14:05	Designed by butlerj	
File SW_1.mdx	Checked by	Diamage
Innovyze	Network 2018.1	

#### Storage Structures for SW_1

#### Infiltration Basin Manhole: SSA4, DS/PN: S1.022

Invert Level (m) 62.800 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)						
0.000	4260.0	0.700	0.0	1.400	0.0	2.100	0.0
0.100	4360.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	4460.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	4560.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	4660.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	0.0	1.200	0.0	1.900	0.0		
0.600	0.0	1.300	0.0	2.000	0.0		

	Page 1	
Ormond House		
Upper Ormond Quay		
Dublin 7	Micro	
Date 17/10/2019 14:08	Designed by butlerj	AUG
File SW_2.mdx	Checked by	
Innovyze	Network 2018.1	
STORM SEWER DESIGN	by the Modified Rational Method	
Design	n Criteria for SW_2	
Pipe Sizes STA	ANDARD Manhole Sizes STANDARD	
FSR Rainfall	Model - Scotland and Ireland	100
Return Period (years) M5-60 (mm) Ratio R	5 PIMP (%) 15.400 Add Flow / Climate Change (%) 0.279 Minimum Backdrop Height (m) 0.	20 20
Maximum Rainfall (mm/hr)	100 Maximum Backdrop Height (m) 2.	000
Maximum Time of Concentration (mins)	30 Min Design Depth for Optimisation (m) 1.	200
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X)	500
Design	ed with Level Soffits	
<u>Time Ar</u>	rea Diagram for SW_2	
Time Area Time Area (mins) (ha) (mins) (ha)	TimeAreaTimeArea(mins)(ha)(mins)(ha)(mins)(ha)(mins)(ha)	
0-4 0.098 4-8 0.875	8-12 1.680 12-16 0.480 16-20 0.036	
-		
Total Area	Contributing (ha) = 3.170	
Total Area Total Pip	Contributing (ha) = $3.170$ pe Volume (m ³ ) = 242.781	
Total Area Total Pip	Contributing (ha) = $3.170$ oe Volume (m ³ ) = 242.781	
Total Area Total Pig <u>Network</u>	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 Design Table for SW_2	
Total Area Total Pig <u>Network</u> PN Length Fall Slope I.Area T.	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 Design Table for SW_2 E. Base k HYD DIA Section Type Au	to
Total Area Total Pip <u>Network</u> PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Autors ns) Flow (l/s) (mm) SECT (mm) Design	to
Total Area Total Pig <u>Network</u> PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Aur ns) Flow (1/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit	to ign
Total Area Total Pip <u>Network</u> PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10 672 0.063 169 4 0.000 0	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 Design Table for SW_2 E. Base k HYD DIA Section Type Aur ns) Flow (l/s) (mm) SECT (mm) Desi 0.00 0.0 0.600 o 225 Pipe/Conduit 0.00 0.0 0.600 o 225 Pipe/Conduit 0.00 0.0 0.600 o 225 Pipe/Conduit	to ign
Total Area Total Pip <u>Network</u> <u>PN</u> Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Aug ns) Flow (1/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 225 Pipe/Conduit	to ign p
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW 2</u> E. Base k HYD DIA Section Type Autors ns) Flow (1/s) (mm) SECT (mm) Desi 0.00 0.0 0.600 o 225 Pipe/Conduit 0.00 0.0 0.600 o 225 Pipe/Conduit	to ign P
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW 2</u> E. Base k HYD DIA Section Type Aur ns) Flow (1/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit	to ign P P P
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Aur ns) Flow (1/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit	to ign P
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw PN Rain T.C. US/IL E I.Z (mm/hr) (mins) (m) (ha	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW 2</u> E. Base k HYD DIA Section Type Aurons) Flow (1/s) (mm) SECT (mm) Desired 0.00 0.0 0.600 o 225 Pipe/Conduit 0.00 0.0 0.600 o 300 Pipe/Conduit 0.00 0.0 0.600 o 300 Pipe/Conduit 0.00 0.0 0.600 o 300 Pipe/Conduit 0.00 0.0 0.600 o 100 Pipe/Conduit	to ign
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw PN Rain T.C. US/IL E I.Z (mm/hr) (mins) (m) (ha 1.000 53.78 6.12 63.706 0	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW 2</u> E. Base k HYD DIA Section Type Au ns) Flow (1/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit	to ign P P
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw PN Rain T.C. US/IL 2 I.Z (mm/hr) (mins) (m) (ha 1.000 53.78 6.12 63.706 0. 1.001 51.06 6.94 63.311 0.	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Au ns) Flow (l/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit	to ign
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw PN Rain T.C. US/IL E I.2 (mm/hr) (mins) (m) (ha 1.000 53.78 6.12 63.706 0. 1.001 51.06 6.94 63.311 0. 1.002 50.51 7.12 63.020 0.	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Aug ns) Flow (l/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit	to ign
Total Area Total Pip Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 67.145 0.395 170.0 0.178 5 1.001 49.439 0.291 169.9 0.058 0 1.002 10.672 0.063 169.4 0.000 0 2.000 30.628 0.449 68.2 0.035 5 1.003 31.169 0.127 245.4 0.056 0 Netw PN Rain T.C. US/IL E I.2 (mm/hr) (mins) (m) (ha 1.000 53.78 6.12 63.706 0. 1.001 51.06 6.94 63.311 0. 1.002 50.51 7.12 63.020 0. 2.000 56.78 5.32 63.481 0.	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <b>E. Base k HYD DIA Section Type Augusts</b> <b>Section Type Augusts</b> <b>E. Base k HYD DIA Section Type Augusts</b> <b>Section Augusts</b> <b>Section Type Augusts</b> <b>Section Type </b>	to ign
Total Area         Total Pip         Network         PN       Length       Fall       Slope       I.Area       T.         (m)       (m)       (1:X)       (ha)       (mi         1.000       67.145       0.395       170.0       0.178       5         1.001       49.439       0.291       169.9       0.058       0         1.002       10.672       0.063       169.4       0.000       0         2.000       30.628       0.449       68.2       0.035       5         1.003       31.169       0.127       245.4       0.056       0         Netw         PN       Rain       T.C.       US/IL       E       I.Z         (mm/hr)       (mins)       (m)       (ha)         1.000       53.78       6.12       63.706       0.         1.001       51.06       6.94       63.311       0.         1.002       50.51       7.12       63.020       0.         2.000       56.78       5.32       63.481       0.         1.003       49.01       7.64       62.882       0.	Contributing (ha) = 3.170 pe Volume (m ³ ) = 242.781 <u>Design Table for SW_2</u> E. Base k HYD DIA Section Type Au ns) Flow (l/s) (mm) SECT (mm) Desi .00 0.0 0.600 o 225 Pipe/Conduit .00 0.0 0.600 o 300 Pipe/Conduit .00 0.0 0.600 o 5.2 1.00 39.8 31.1 .236 0.0 0.0 5.2 1.00 39.8 39.2 .326 0.0 0.0 0.5 1.00 39.8 39.2 .035 0.0 0.0 1.1 1.59 63.0 6.5 .328 0.0 0.0 8.7 1.00 70.6 52.2 82-2018 Inpovyze	to ign

DBFL C	onsult	ing E	ngine	ers								Page	e 2
Ormond	House												
Upper	Ormond	Quay											
Dublin	7											Mid	
Date 1	7/10/2	019 1	4:08		I	Design	ned by	but 1	eri				iu
File S	√, 20, 2 ₩ 2 m.d.	v	1.00			Checke	hd by	20401	<u> </u>			Dſc	Inage
The	<u></u>	~			`	Motuo	$\frac{1}{2}$	0 1					
тшоуу	26				1	Netwol	_K 201	0.1					
	<u>Network Design Table for SW_2</u>												
PN	Length	Fall	Slope	I.Area	T.E.	. Е	Base	k	HYD	DIA	Section	Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins	s) Flow	7 (l/s)	(mm)	SECT	(mm)			Design
1 004	27 815	0 114	244 0	0 019	0 0	0	0 0	0 600	0	300	Pine/Con	duit	_
1.001	27.010	0.111	211.0	0.019	0.0		0.0	0.000	0	500	1100,0011	aure	•
3.000	29.056	0.715	40.6	0.090	5.0	00	0.0	0.600	0	225	Pipe/Con	duit	<del>0</del>
1 005	11 200	0 046	245 4	0 009	0 0	10	0 0	0 600	0	300	Pino/Con	dui +	•
1 006	9 259	0.040	243.4	0.009	0.0	0	0.0	0.000	0	300	Pipe/Con	duit	0 
1.007	8.022	0.025	320.9	0.021	0.0	0	0.0	0.600	0	375	Pipe/Con	duit	
1.008	16.774	0.052	322.6	0.016	0.0	00	0.0	0.600	0	375	Pipe/Con	duit	, and a second s
1.009	18.110	0.096	188.6	0.052	0.0	00	0.0	0.600	0	375	Pipe/Con	duit	ř
4.000	27.089	0.487	55.6	0.067	5.0	00	0.0	0.600	0	225	Pipe/Con	duit	<del>0</del>
5 000	23 351	0 137	170 /	0 073	5 0	10	0 0	0 600	0	225	Pine/Con	dui+	2
5.000	23.331	0.137	1/0.4	0.075	5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0	0.000	0	220	TTPE/COII	aurc	•
4.001	7.118	0.042	169.5	0.017	0.0	00	0.0	0.600	0	225	Pipe/Con	duit	<b>n</b> î
4.002	4.702	0.043	109.3	0.048	0.0	00	0.0	0.600	0	225	Pipe/Con	duit	ă.
4.003	6.852	0.029	236.3	0.000	0.0	0	0.0	0.600	0	300	Pipe/Con	duit	
4.004	31.114	0.184	169.1	0.000	0.0	00	0.0	0.600	0	300	Pipe/Con	duit	ă.
4.005	10.413	0.350	29.8	0.042	0.0	00	0.0	0.600	0	300	Pipe/Con	duit	ð
1 010	10 252	0 040	405 0	0 011	0 0		0 0	0 000		4 5 0	Dine /C	J J. 4	•
1 011	19.353	0.048	405.0	0.011	0.0	0	0.0	0.600	0	450	Pipe/Con	auit	d,
1.011	9.40/	0.023	409.0	0.069	0.0	0	0.0	0.000	0	450	ripe/Con	αμιτ	Ū"
				N	etwor	ck Res	ults '	<u> Table</u>					

P	'n	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.	004	47.76	8.10	62.755	0.346	0.0	0.0	9.0	1.00	70.8	53.8	
3.	000	57.14	5.24	63.503	0.090	0.0	0.0	2.8	2.06	81.8	16.7	
1.	005	47.27	8.29	62.641	0.445	0.0	0.0	11.4	1.00	70.6	68.4	
1.	006	46.88	8.45	62.595	0.461	0.0	0.0	11.7	1.00	70.9	70.2	
1.	007	46.55	8.58	62.482	0.482	0.0	0.0	12.2	1.01	111.1	72.9	
1.	800	45.88	8.86	62.457	0.498	0.0	0.0	12.4	1.00	110.8	74.3	
1.	009	45.34	9.09	62.405	0.550	0.0	0.0	13.5	1.32	145.3	81.1	
4.	000	57.05	5.26	63.594	0.067	0.0	0.0	2.1	1.76	69.9	12.4	
5.	000	56.51	5.39	63.313	0.073	0.0	0.0	2.2	1.00	39.7	13.4	
4.	001	56.04	5.51	63.107	0.157	0.0	0.0	4.8	1.00	39.8	28.7	
4.	002	55.80	5.57	63.065	0.205	0.0	0.0	6.2	1.25	49.7	37.3	
4.	003	55.37	5.68	62.947	0.205	0.0	0.0	6.2	1.02	72.0	37.3	
4.	004	53.80	6.11	62.918	0.205	0.0	0.0	6.2	1.21	85.3	37.3	
4.	005	53.59	6.17	62.734	0.247	0.0	0.0	7.2	2.89	204.5	43.0	
1.	010	44.62	9.41	62.234	0.809	0.0	0.0	19.5	1.00	159.7	117.3	
1.	011	44.28	9.56	62.186	0.878	0.0	0.0	21.1	1.00	158.9	126.3	
					©1982-2	2018 Innov	vze					

DBFL C	onsult	ing E	ngine	ers							Page	e 3
Ormond	House											
Upper	Ormond	Quay										
Dublin	7										Mig	
Date 1	7/10/2	019 1	4:08		De	signed by	butl	erj				
File S	W 2.md	x			Ch	necked by					Ulc	IIIIdye
Innovy	 ze				Ne	etwork 201	8.1					
1												
	<u>Network Design Table for SW_2</u>											
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	Tvpe	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design
1.012	26.429	0.065	406.6	0.000	0.00	0.0	0.600	0	450	Pipe/Con	duit	ന്
												-
6.000	25.409	0.708	35.9	0.024	5.00	0.0	0.600	0	225	Pipe/Con	duit	<del>0</del>
1.013	4.580	0.017	269.4	0.033	0.00	0.0	0.600	0	450	Pipe/Con	duit	æ
1.014	4.591	0.017	270.1	0.000	0.00	0.0	0.600	0	450	Pipe/Con	duit	ð
7.000	23.993	0.702	34.2	0.048	5.00	0.0	0.600	0	225	Pipe/Con	duit	a
7.001	7.578	0.345	22.0	0.008	0.00	0.0	0.600	0	225	Pipe/Con	duit	Ť
1.015	32.479	0.087	373.3	0.000	0.00	0.0	0.600	0	450	Pipe/Con	duit	
1.016	65.007	0.311	209.0	0.148	0.00	0.0	0.600	0	450	Pipe/Con	duit	ď
8,000	21.027	0.124	169.6	0.052	5.00	0.0	0.600	0	225	Pipe/Con	duit.	2
8.001	26.934	0.353	76.3	0.049	0.00	0.0	0.600	0	225	Pipe/Con	duit	e e e e e e e e e e e e e e e e e e e
8.002	28.083	0.368	76.3	0.052	0.00	0.0	0.600	0	225	Pipe/Con	duit	ě
8.003	9.795	0.128	76.3	0.009	0.00	0.0	0.600	0	225	Pipe/Con	duit	Ū
9.000	23.356	0.137	170.5	0.047	5.00	0.0	0.600	0	225	Pipe/Con	duit	a
9.001	38.724	0.228	169.8	0.133	0.00	0.0	0.600	0	225	Pipe/Con	duit	ě
9.002	8.360	0.049	170.6	0.009	0.00	0.0	0.600	0	225	Pipe/Con	duit	
9.003	13.010	0.077	169.0	0.019	0.00	0.0	0.600	0	225	Pipe/Con	duit	Ť
				N	etwork	Results :	<u>Cable</u>					
וס	J Pai	in T	ירי	US/TT. 5	T Ares	Σ Base	Foul	Add	Flow	Vel Ca	n E	clow.
PI	, na.	1			T.ATed		E OUL	Add .	Ow	ver Co		- / ·

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)	
1.012	43.35	10.00	62.163	0.878	0.0	0.0	21.1	1.00	159.4	126.3	
6.000	57.31	5.19	63.268	0.024	0.0	0.0	0.7	2.19	87.1	4.4	
1.013	43.22	10.07	62.098	0.934	0.0	0.0	21.9	1.23	196.2	131.2	
1.014	43.10	10.13	62.081	0.934	0.0	0.0	21.9	1.23	196.0	131.2	
7.000	57.37	5.18	63.336	0.048	0.0	0.0	1.5	2.25	89.3	8.9	
7.001	57.19	5.22	62.634	0.055	0.0	0.0	1.7	2.80	111.5	10.3	
1.015	42.08	10.65	62.064	0.990	0.0	0.0	22.6	1.05	166.4	135.3	
1.016	40.67	11.42	61.977	1.137	0.0	0.0	25.0	1.40	223.0	150.3	
8.000	56.67	5.35	63.713	0.052	0.0	0.0	1.6	1.00	39.8	9.6	
8.001	55.50	5.65	63.589	0.101	0.0	0.0	3.0	1.50	59.6	18.2	
8.002	54.34	5.96	63.236	0.153	0.0	0.0	4.5	1.50	59.6	27.0	
8.003	53.95	6.07	62.868	0.162	0.0	0.0	4.7	1.50	59.6	28.4	
9.000	56.51	5.39	63.720	0.047	0.0	0.0	1.4	1.00	39.7	8.6	
9.001	54.08	6.04	63.583	0.179	0.0	0.0	5.3	1.00	39.8	31.5	
9.002	53.58	6.17	63.355	0.188	0.0	0.0	5.5	1.00	39.7	32.8	
9.003	52.84	6.39	63.306	0.207	0.0	0.0	5.9	1.00	39.9	35.6	
				01000	0010 -						
				©1982-2	ZUIS INNOV	yze					

DBFL Consulting Engineers												
Ormond	House											
Upper (	Ormond	Quay										
Dublin	7									Mid		
Date 1	7/10/20	)19 14	1:08		De	signed by	butle	erj				
File SV	√_2.md≯	ζ			Ch	ecked by				LIC	maye	
Innovyze Network 2018.1												
<u>Network Design Table for SW_2</u>												
PN Length Fall Slope Larea T.E. Base & HYD DIA Section Type												
PN	Length (m)	raii (m)	(1·X)	1.Area (ha)	T.E. (mins)	Base Flow (1/s)	K (mm)	SECT	(mm)	Section Type	Auto	
	()	()	(1.1.)	(110)	(	1100 (1)0)	(11211)	5201	(		Debign	
9.004	6.934	0.073	95.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď	
10.000	19.324	0.114	169.5	0.080	5.00	0.0	0.600	0	225	Pipe/Conduit	a	
10.001	10.566	0.123	85.9	0.004	0.00	0.0	0.600	0	225	Pipe/Conduit	ď	
											Ţ	
9.005	7.417	0.030	247.2	0.064	0.00	0.0	0.600	0	300	Pipe/Conduit	d d	
9.006	61.313	0.250	245.3	0.084	0.00	0.0	0.600	0	300	Pipe/Conduit	, and a second s	
9.007	23.860	0.136	1/5.4	0.029	0.00	0.0	0.600	0	300	Pipe/Conduit	ď	
8.004	20.111	0.062	324.4	0.024	0.00	0.0	0.600	0	375	Pipe/Conduit	<b>e</b> ff	
8.005	44.903	0.787	57.1	0.090	0.00	0.0	0.600	0	375	Pipe/Conduit	ď	
1 017	10 654	0 010	500 0	0 0 0 0	0 00	0 0	0 600	0	600	Ding (Conduit	•	
1.017	10.054	0.017	590.0	0.008	0.00	0.0	0.600	0	600	Pipe/Conduit	, de la companya de l	
1.018	13 /05	0.017	590.0	0.013	0.00	0.0	0.000	0	600	Pipe/Conduit Bipe/Conduit	<b>o</b> r	
1 020	11 122	0.023	590.0	0.013	0.00	0.0	0.000	0	600	Pipe/Conduit		
1 020	36 122	0.019	590.0	0.043	0.00	0.0	0.000	0	600	Pipe/Conduit	<b>U</b>	
1 022	6 513	0.002	590.0	0.000	0.00	0.0	0 600	0	600	Pipe/Conduit		
1.022	0.010	0.011	550.0	0.000	0.00	0.0	0.000	0	000	T They couldn't	•	
11.000	83.181	0.553	150.4	0.140	5.00	0.0	0.600	0	225	Pipe/Conduit	ð	
11.001	7.020	0.041	171.2	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ð	

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
9.004	52.55	6.48	63.229	0.207	0.0	0.0	5.9	1.34	53.4	35.6
10.000 10.001	56.79 56.29	5.32 5.45	<mark>63.393</mark> 63.279	0.080 0.084	0.0	0.0	2.5 2.6	1.00 1.41	39.8 56.1	14.8 15.4
9.005 9.006 9.007	52.14 49.05 48.14	6.60 7.62 7.96	63.081 63.051 62.801	0.355 0.439 0.468	0.0 0.0 0.0	0.0 0.0 0.0	10.0 11.7 12.2	1.00 1.00 1.18	70.4 70.6 83.7	60.2 69.9 73.1
8.004 8.005	47.26 46.48	8.29 8.61	62.590 62.528	0.653 0.743	0.0	0.0	16.7 18.7	1.00 2.40	110.5 265.4	100.3 112.2
1.017 1.018 1.019 1.020 1.021 1.022	40.36 40.07 39.69 39.39 38.43 38.27	11.60 11.77 11.99 12.18 12.79 12.90	61.516 61.498 61.480 61.458 61.439 61.377	1.887 1.902 1.915 1.959 1.959 1.959	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	41.3 41.3 41.3 41.8 41.8 41.8	1.00 1.00 1.00 1.00 1.00 1.00	281.4 281.4 281.4 281.4 281.4 281.4 281.4	247.6 247.7 247.7 250.7 250.7 250.7
11.000 11.001	53.14 52.74	6.30 6.42	63.874 63.321	0.140 0.140	0.0 0.0	0.0	4.0 4.0	1.06	42.3 39.6	24.3 24.3

DBFL Consulting Engineers Pa											Page	e 5
Ormond	House											
Upper (	Ormond	Quay										
Dublin	7										Mi	
Date 17	7/10/20	)19 14	1:08		De	signe	ed by	butle	erj			
File SV	√_2.mdx	X			Ch	ecked	d by				Dic	maye
Innovyz	ze				Ne	twor}	< 2018	3.1				
Network Design Wable for SW 2												
<u>Network Design Table for SW_2</u>												
PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1 023	40 812	0 069	590 0	0 064	0 00		0 0	0 600	0	600	Pipe/Conduit	_0
1.023	9.221	0.016	576.3	0.063	0.00		0.0	0.600	0	600	Pipe/Conduit	
1.025	21.851	0.037	590.0	0.024	0.00		0.0	0.600	0	600	Pipe/Conduit	Å
1.026	24.990	0.042	590.0	0.035	0.00		0.0	0.600	0	600	Pipe/Conduit	Å
1.027	36.657	0.113	325.3	0.023	0.00		0.0	0.600	0	600	Pipe/Conduit	ď
												-
12.000	51.267	1.282	40.0	0.129	5.00		0.0	0.600	0	225	Pipe/Conduit	Ð
12.001	7.342	0.245	30.0	0.013	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
12.002	12.719	0.585	21.7	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	6
1.028	39.395	0.067	588.0	0.049	0.00		0.0	0.600	0	600	Pipe/Conduit	÷
13.000	15.075	0.089	169.4	0.026	5.00		0.0	0.600	0	225	Pipe/Conduit	<del>0</del>
13.001	12.686	0.075	169.1	0.009	0.00		0.0	0.600	0	225	Pipe/Conduit	ீ
13.002	13.531	0.080	169.1	0.010	0.00		0.0	0.600	0	225	Pipe/Conduit	ீ
13.003	18.466	0.109	169.4	0.014	0.00		0.0	0.600	0	225	Pipe/Conduit	6
14.000	47.043	0.641	73.4	0.092	5.00		0.0	0.600	0	225	Pipe/Conduit	a
					2.50				0		1,aro	
15.000	23.855	0.140	170.4	0.055	5.00		0.0	0.600	0	225	Pipe/Conduit	<del>a</del>
15.001	6.035	0.036	167.6	0.004	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
												-

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (1/s)			
1.023	37.27	13.58	61.366	2.164	0.0	0.0	43.7	1.00	281.4	262.1			
1.024	37.06	13.73	61.297	2.227	0.0	0.0	44.7	1.01	284.8	268.2			
1.025	36.56	14.10	61.281	2.251	0.0	0.0	44.7	1.00	281.4	268.2			
1.026	36.01	14.52	61.244	2.286	0.0	0.0	44.7	1.00	281.4	268.2			
1.027	35.43	14.97	61.201	2.310	0.0	0.0	44.7	1.34	380.2	268.2			
12.000	56.42	5.41	63.576	0.129	0.0	0.0	3.9	2.07	82.5	23.6			
12.001	56.22	5.46	62.294	0.142	0.0	0.0	4.3	2.40	95.4	25.9			
12.002	55.93	5.54	62.049	0.142	0.0	0.0	4.3	2.82	112.1	25.9			
1.028	34.64	15.63	61.089	2.500	0.0	0.0	46.9	1.00	281.9	281.4			
13.000	57.07	5.25	63.200	0.026	0.0	0.0	0.8	1.00	39.8	4.9			
13.001	56.23	5.46	63.111	0.035	0.0	0.0	1.1	1.00	39.9	6.5			
13.002	55.36	5.69	63.036	0.046	0.0	0.0	1.4	1.00	39.9	8.2			
13.003	54.22	5.99	62.956	0.060	0.0	0.0	1.8	1.00	39.8	10.5			
14.000	56.03	5.51	63.680	0.092	0.0	0.0	2.8	1.53	60.8	16.8			
15.000	56.48	5.40	63.000	0.055	0.0	0.0	1.7	1.00	39.7	10.1			
15.001	56.08	5.50	62.860	0.059	0.0	0.0	1.8	1.01	40.0	10.8			
				©1982-2	018 Innov	yze							

DBFL C	onsulti	ng En	ginee	rs							Pag	e 6
Ormond	House											
Upper	Ormond	Quay										
Dublin	7										Mi	
Date 1	7/10/20	19 14	:08		Des	signe						
File S	W_2.mdx				Che	ecked	DIC	anaye				
Innovy	ze				Net	work	2018	.1				
<u>Network Design Table for SW_2</u>												
PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	11	Design
14 001	22 918	0 135	169.8	0 020	0 00		0 0	0 600	0	225	Pine/Condui	+ _0
14.001	16.264	0.096	169.4	0.020	0.00		0.0	0.600	0	225	Pipe/Condui	t 🗗
											1	•
13.004	17.157	0.070	245.1	0.013	0.00		0.0	0.600	0	300	Pipe/Condui	t 🔐
13.005	16.780	0.068	246.8	0.013	0.00		0.0	0.600	0	300	Pipe/Condui	t 💣
13.006	10.875	0.044	247.2	0.008	0.00		0.0	0.600	0	300	Pipe/Condui	t 💣
13.007	19.330	0.112	172.6	0.035	0.00		0.0	0.600	0	300	Pipe/Condui	t 💣
16 000	26 734	0 510	52 4	0 045	5 00		0 0	0 600	0	225	Pipe/Condui	+ 🔺
10.000	201/01	0.010	02.1	0.010	0.00		0.0	0.000	Ũ	220	1190,0011441	• <u> </u>
13.008	14.931	0.061	244.8	0.012	0.00		0.0	0.600	0	300	Pipe/Condui	t 🔐
13.009	21.108	0.086	245.4	0.042	0.00		0.0	0.600	0	300	Pipe/Condui	t 🚠
13.010	27.177	0.111	244.8	0.016	0.00		0.0	0.600	0	300	Pipe/Condui	t 🚠
13.011	28.058	0.086	326.3	0.049	0.00		0.0	0.600	0	375	Pipe/Condui	t 🚡
13.012	25.281	0.078	324.1	0.056	0.00		0.0	0.600	0	375	Pipe/Condui	t 💣
17 000	36 150	0 000	40 7	0 0 9 7	5 00		0 0	0 600	0	225	Pipe/Conduit	+ 1
17.000	7 202	0.009	102.0	0.007	0.00		0.0	0.000	0	225	Pipe/Condui	
1/.001	1.302	0.000	123.0	0.032	0.00		0.0	0.000	0	223	r they cougar	ະ 🤃
13.013	29.384	0.091	322.9	0.000	0.00		0.0	0.600	0	375	Pipe/Condui	t 🔐
13.014	147.175	0.453	324.9	0.000	0.00		0.0	0.600	0	375	Pipe/Condui	t 🖌
											-	-

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)			
14.001	54.58	5.89	62.824	0.172	0.0	0.0	5.1	1.00	39.8	30.5			
14.002	53.61	6.17	62.689	0.203	0.0	0.0	5.9	1.00	39.8	35.4			
13.004	52.64	6.45	62.518	0.275	0.0	0.0	7.9	1.00	70.7	47.1			
13.005	51.72	6.73	62.448	0.288	0.0	0.0	8.1	1.00	70.4	48.4			
13.006	51.15	6.91	62.380	0.296	0.0	0.0	8.2	1.00	70.4	49.3			
13.007	50.32	7.18	62.336	0.332	0.0	0.0	9.0	1.19	84.4	54.3			
16.000	57.09	5.25	62.809	0.045	0.0	0.0	1.4	1.81	72.0	8.3			
13.008	49.60	7.43	62.224	0.389	0.0	0.0	10.4	1.00	70.7	62.6			
13.009	48.61	7.78	62.163	0.430	0.0	0.0	11.3	1.00	70.6	68.0			
13.010	47.41	8.24	62.077	0.446	0.0	0.0	11.5	1.00	70.7	68.7			
13.011	46.24	8.71	61.891	0.495	0.0	0.0	12.4	1.00	110.2	74.3			
13.012	45.25	9.13	61.805	0.551	0.0	0.0	13.5	1.00	110.5	81.0			
17.000	56.90	5.29	63.430	0.087	0.0	0.0	2.7	2.06	81.8	16.1			
17.001	56.48	5.40	62.541	0.119	0.0	0.0	3.6	1.18	46.8	21.8			
13.013	44.17	9.62	61.727	0.670	0.0	0.0	16.0	1.00	110.8	96.1			
13.014	39.57	12.07	61.636	0.670	0.0	0.0	16.0	1.00	110.4	96.1			
				©1982-2	018 Innov	yze							

DBFL Consulting Engineer	ſS			Page 7
Ormond House				
Upper Ormond Quay				
Dublin 7				Mirro
Date 17/10/2019 14:08	D	esigned by	butlerj	Drainago
File SW_2.mdx	C	hecked by		Drainage
Innovyze	N	letwork 2018	3.1	
]	Network De:	<u>sign Table</u>	<u>for SW_2</u>	
PN Length Fall Slope I	Area TE	Base	k HYD DTA	Section Type Auto
(m) (m) (1:X)	(ha) (mins)	) Flow (1/s)	(mm) SECT (mm)	Design
1 000 00 000 0 010 750 0				
1.029 36.986 0.049 750.0 1 030 20 764 0 028 750 0	0.000 0.00		0.600 o 750	Pipe/Conduit 💣
1.031 3.227 0.004 750.0	0.000 0.00	0.0	0.600 o 750	Pipe/Conduit
1.032 3.277 0.004 750.0	0.000 0.00	0.0	0.600 o 750	Pipe/Conduit 🔐
1.033 36.885 0.164 225.0	0.000 0.00	0.0	0.600 o 750	Pipe/Conduit 💣
	Nation	le Dooulte "		
	<u>Networ</u>	<u>k kesuits 'l</u>	adle	
PN Rain T.C. US	S/IL Σ I.Are	a ΣBase	Foul Add Flow	Vel Cap Flow
(mm/hr) (mins) (	(m) (ha)	Flow (1/s)	(1/s) (1/s)	(m/s) (1/s) (1/s)
1 000 00 04 16 04 60	000 0.17			1 01 440 0 040 7
1.029 33.94 16.24 60	.808 3.17 759 3.17	0 0.0	0.0 58.3	1.01 448.0 349.7 1 01 448 0 349 7
1.031 33.51 16.63 60	.731 3.17	0 0.0	0.0 58.3	1.01 448.0 349.7
1.032 33.45 16.69 60	.727 3.17	0.0	0.0 58.3	1.01 448.0 349.7
1.033 33.10 17.02 60	.722 3.17	0.0	0.0 58.3	1.86 822.4 349.7
Free	Flowing O	<u>utfall Deta</u>	<u>ils for SW_2</u>	
011+ f = 1 1	Outfall C			ы
Pipe Number	Name	(m) (m)	I. Level (mm)	(mm)
		(	(m)	()
1.022	970			0
1.033	SBU 6	60.5	58 U.UUU U	U
	@1082.	2010 Tana		

DBFL Consulting Engineers		Page 8
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 17/10/2019 14:08	Designed by butlerj	
File SW_2.mdx	Checked by	Diamage
Innovyze	Network 2018.1	

#### Storage Structures for SW_2

#### Infiltration Basin Manhole: SB3, DS/PN: 1.031

Invert Level (m) 62.000 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)						
0.000	3450.0	0.700	0.0	1.400	0.0	2.100	0.0
0.100	3550.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	3650.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	3750.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	3850.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	0.0	1.200	0.0	1.900	0.0		
0.600	0.0	1.300	0.0	2.000	0.0		

Appendix F

## **Foul Sewer Network Calculations**

DBFL Consulting Engineers		Page 1
Ormond House		
Upper Ormond Quay		
Dublin 7		Micco
Date 16/10/2019 09:51	Designed by butlerj	
File FS_1.mdx	Checked by	Diginarie
Innovyze	Network 2018.1	

## FOUL SEWERAGE DESIGN

#### Design Criteria for FS_1

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)10Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Calculation MethodEN 752Maximum Backdrop Height (m)2.000Frequency Factor0.50Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

#### Network Design Table for FS_1

PN	Length (m)	Fall (m)	Slope	Area (ha)	Units	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	()	()	(/	(,			(-/-/	(,		(,		<b>j</b>
1.000	20.154	0.438	46.0	0.000	9.9		0.0	1.500	0	150	Pipe/Conduit	a
1.001	16.886	0.272	62.1	0.000	9.9		0.0	1.500	0	150	Pipe/Conduit	- A
1.002	20.800	0.277	75.1	0.000	9.9		0.0	1.500	0	150	Pipe/Conduit	ě.
1.003	20.971	0.280	74.9	0.000	9.9		0.0	1.500	0	225	Pipe/Conduit	- A
1.004	14.459	0.181	79.9	0.000	6.6		0.0	1.500	0	225	Pipe/Conduit	- A
1.005	14.675	0.173	84.8	0.000	9.9		0.0	1.500	0	225	Pipe/Conduit	- A
1.006	15.538	0.173	89.8	0.000	6.6		0.0	1.500	0	225	Pipe/Conduit	- A
1.007	9.128	0.272	33.6	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- A
											-	
2.000	13.488	0.346	39.0	0.000	6.6		0.0	1.500	0	150	Pipe/Conduit	a
2.001	13.147	0.212	62.0	0.000	13.2		0.0	1.500	0	150	Pipe/Conduit	- A
2.002	11.445	0.164	69.8	0.000	6.6		0.0	1.500	0	150	Pipe/Conduit	- A
2.003	11.392	0.146	78.0	0.000	6.6		0.0	1.500	0	150	Pipe/Conduit	- ř
2.004	20.185	0.297	68.0	0.000	0.0		0.0	1.500	0	225	- Pipe/Conduit	ř

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
1.000	68.350	0.000	0.0	9.9	0.2	28	0.75	1.29	22.9	1.7	
1.001	67.912	0.000	0.0	19.8	0.2	36	0.75	1.11	19.7	2.4	
1.002	67.640	0.000	0.0	29.7	0.3	42	0.75	1.01	17.9	3.0	
1.003	67.288	0.000	0.0	39.6	0.3	39	0.75	1.33	52.8	3.5	
1.004	67.008	0.000	0.0	46.2	0.3	41	0.75	1.28	51.1	3.7	
1.005	66.827	0.000	0.0	56.1	0.4	44	0.75	1.25	49.6	4.1	
1.006	66.654	0.000	0.0	62.7	0.4	46	0.75	1.21	48.2	4.4	
1.007	66.481	0.000	0.0	62.7	0.4	36	1.06	1.98	78.9	4.4	
2 000	67 450	0 000	0 0	6 6	0 1	25	0 75	1 41	24 8	14	
2.001	67.104	0.000	0.0	19.8	0.2	36	0.75	1.11	19.7	2.4	
2.002	66.892	0.000	0.0	26.4	0.3	40	0.75	1.05	18.5	2.8	
2.003	66.728	0.000	0.0	33.0	0.3	43	0.75	0.99	17.5	3.2	
2.004	66.507	0.000	0.0	33.0	0.3	37	0.75	1.39	55.4	3.2	
©1982-2018 Innovyze											

DBFL Co	nsulti	ng En	ginee	rs								Pa	ige 2
Ormond	House												
Upper O	rmond	Quay											
Dublin	7	_										N	licco
Date 16	/10/20	19 09	:51		E	esig	ned by	y but	lerj				
File FS	1.mdx				C	heck	ed by	-	-				rainage
Innovyz	e				N	Ietwo	rk 201	18.1					
-													
			rk De	<u>sign</u>	Table	e for	FS_1						
DN	Length	Fall	Slope	Area	Ilnite	B	200	k	HYD	ΔΤΠ	Secti	00 Tyme	Auto
	(m)	(m)	(1:X)	(ha)	0111 03	Flow	(1/s)	(mm)	SECT	(mm)	Decti	on type	Design
	• •		. ,							. ,			
1.008	26.816	0.233	115.1	0.000	16.5		0.0	1.500	0	225	Pipe/	Conduit	: <b></b>
1.009	33.204	0.266	124.8	0.000	26.4		0.0	1.500	0	225	Pipe/	Conduit	- U - B
1.010	15.762	0.126	125.1	0.000	0.0		0.0	1.500	0	225	Pipe/	Conduit	: 💣
3.000	16.838	0.234	72.0	0.000	26.4		0.0	1.500	0	150	Pipe/	Conduit	: A
3.001	21.927	0.274	80.0	0.000	23.1		0.0	1.500	0	225	Pipe/	Conduit	- <del>-</del>
3.002	24.040	0.253	95.0	0.000	19.8		0.0	1.500	0	225	Pipe/	Conduit	÷ 💣
3.003	22.597	0.222	101.8	0.000	16.5		0.0	1.500	0	225	Pipe/	Conduit	e 🕰
3.004	33.239	0.316	105.2	0.000	10.5		0.0	1.500	0	225	Pipe/	Conduit	ď
1.011	13.918	0.127	109.6	0.000	0.0		0.0	1.500	0	225	Pipe/	Conduit	: <b>ď</b>
4.000	46.078	0.576	80.0	0.000	49.5		0.0	1.500	0	225	Pipe/	Conduit	: 🔒
4.001	22.303	0.279	79.9	0.000	0.0		0.0	1.500	0	225	Pipe/	Conduit	÷ 💣
4.002	8.086	0.101	80.1	0.000	0.0		0.0	1.500	0	225	Pipe/	Conduit	: <b>d</b>
1.012	16.327	0.096	170.1	0.000	13.2		0.0	1.500	0	225	Pipe/	Conduit	: <b>"</b>
1.013	16.688	0.098	170.3	0.000	0.0		0.0	1.500	0	225	Pipe/	Conduit	÷ 💣
1.014	27.234	0.156	174.6	0.000	26.4		0.0	1.500	0	225	Pipe/	Conduit	: 🕑
5.000	15.376	0.394	39.0	0.000	6.6		0.0	1.500	0	150	Pipe/	Conduit	: <del>1</del>
				<u>N</u>	etwor	k Res	sults	Table	2				
P	∙n us/	τι. Σ	Area	Σ Base	<b>-</b> Σ	Units	Add Fl	LOW P.I	)ep P.	Vel	Vel	Сар	Flow
-	(m	.) (1	ha) Fi	low (1/	/s)	0112.00	(1/s	) (m	m) (n	n/s)	(m/s)	(1/s)	(1/s)
1.0	008 66.2	209 0	.000	(	0.0	112.2	(	0.5	56 (	).75	1.07	42.5	5.8
1.0	009 65.9	976 0	.000	(	0.0	138.6	(	0.6	61 (	.75	1.03	40.8	6.5
1.0	010 65.	710 0	.000	(	0.0	138.6	(	0.6	61 (	.75	1.03	40.8	6.5
3.0	000 <mark>67.</mark>	550 0	.000	(	0.0	26.4	(	0.3	40 (	).75	1.03	18.3	2.8
3.0	001 67.2	241 0	.000	(	0.0	49.5	(	0.4	42 (	.75	1.28	51.0	3.9
3.0	002 66.	967 0	.000	(	0.0	69.3	(	0.4	48 (	.75	1.18	46.8	4.6
3.0	03 66.	714 0	.000	(	).0	85.8	(	).5	51 (	).75	1.14	45.2	5.1
	JU4 00.	0 000	.000	(		102.3	(		J4 (	0.10	1.14	44.0	J.0

4.000	65.515	0.000	0.0	49.5	0.4	42	0.75	1.28	51.1	3.9
4.001	64.939	0.000	0.0	49.5	0.4	42	0.75	1.28	51.1	3.9
4.002	64.660	0.000	0.0	49.5	0.4	42	0.75	1.28	51.0	3.9
1.012	64.559	0.000	0.0	303.6	0.9	80	0.75	0.88	34.9	9.6
1.013	64.463	0.000	0.0	303.6	0.9	80	0.75	0.88	34.9	9.6
1.014	64.365	0.000	0.0	330.0	0.9	83	0.75	0.87	34.5	10.0
5.000	64.950	0.000	0.0	6.6	0.1	25	0.75	1.41	24.8	1.4
			©198	2-2018 In	novyze					

0.0 240.9 0.8 68 0.85 1.10 43.6 8.5

1.011 65.584 0.000

DBFL Consulting Engineers		Page 3
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 16/10/2019 09:51	Designed by butlerj	
File FS_1.mdx	Checked by	Diamacje
Innovyze	Network 2018.1	
<u>Network</u>	Design Table for FS <u>1</u>	
PN Length Fall Slope Area Uni (m) (m) (1:X) (ha)	ts Base k HYD DIA Section ' Flow (1/s) (mm) SECT (mm)	Fype Auto Design

5.001	10.885	0.209	52.1	0.000	6.6	0.0	1.500	0	150	Pipe/Conduit	æ
5.002	13.973	0.269	51.9	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ð
1.015	8.735	0.049	178.3	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	<b>6</b>
1.016	12.246	0.068	180.1	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	÷.
1.017	12.671	0.070	181.0	0.000	13.2	0.0	1.500	0	225	Pipe/Conduit	Ē.
1.018	25.979	0.153	170.0	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	<u>.</u>
6.000	12.038	0.177	68.0	0.000	23.1	0.0	1.500	0	150	Pipe/Conduit	a
6.001	6.892	0.101	68.2	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ď
											-
7.000	18.290	0.345	53.0	0.000	13.2	0.0	1.500	0	150	Pipe/Conduit	<del>0</del>
7.001	8.976	0.280	32.1	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ď
6.002	7.445	0.099	75.2	0.000	6.6	0.0	1.500	0	225	Pipe/Conduit	<b>f</b>
6.003	20.456	0.436	46.9	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	- A
6.004	12.742	0.159	80.1	0.000	6.6	0.0	1.500	0	225	Pipe/Conduit	- A
6.005	20.770	0.219	94.8	0.000	23.1	0.0	1.500	0	225	Pipe/Conduit	- A
6.006	15.111	0.194	77.9	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	- The second sec
											-
8.000	28.272	0.321	88.1	0.000	59.4	0.0	1.500	0	225	Pipe/Conduit	ð

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
5.001 5.002	64.556 63.900	0.000 0.000	0.0	13.2 13.2	0.2	31 31	0.76 0.76	1.22 1.22	21.5 21.5	2.0 2.0	
1.015 1.016 1.017	63.556 63.507 63.439	0.000 0.000 0.000	0.0 0.0 0.0	343.2 343.2 356.4	0.9 0.9 0.9	84 84 85	0.75 0.75 0.75	0.86 0.85 0.85	34.1 34.0 33.9	10.2 10.2 10.4	
1.018	63.369	0.000	0.0	356.4	0.9	84	0.77	0.88	35.0	10.4	
6.000 6.001	<mark>65.250</mark> 65.073	0.000 0.000	0.0	23.1 23.1	0.2	38 38	0.75 0.75	1.06 1.06	18.8 18.8	2.6 2.6	
7.000 7.001	65.100 64.300	0.000 0.000	0.0	13.2 13.2	0.2	31 28	0.75 0.89	1.20 1.55	21.3 27.4	2.0 2.0	
6.002 6.003	63.945 63.846	0.000	0.0	42.9 42.9	0.3	40 36	0.75	1.32	52.7 66.7	3.6 3.6	
6.004 6.005 6.006	63.251 63.032	0.000 0.000	0.0	49.5 72.6 72.6	0.4 0.4 0.4	42 48 46	0.75	1.28 1.18 1.30	46.9 51.7	4.7 4.7	
8.000	63.300	0.000	0.0	59.4	0.4	45	0.75	1.22	48.6	4.2	
©1982-2018 Innovyze											

DBFL Consulting Engineers		Page 4
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 16/10/2019 09:51	Designed by butlerj	
File FS_1.mdx	Checked by	Diamage
Innovyze	Network 2018.1	

#### <u>Network Design Table for FS_1</u>

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	Ba Flow	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
6 007	22 262	0 1 0 1	101 0	0 000	0 0		0 0	1 500		225	Ding (Conduit	•
6.007	23.203	0.191	121.0	0.000	0.0		0.0	1.500	0	225	Pipe/conduit	, na star na st
6.008	6.250	0.051	122.5	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	, di
6.009	58.160	0.477	121.9	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	5
9.000	39.894	0.407	98.0	0.000	56.1		0.0	1.500	0	150	Pipe/Conduit	a
9.001	28.354	0.334	84.9	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- A
9.002	21.055	0.409	51.5	0.000	6.6		0.0	1.500	0	225	Pipe/Conduit	- A
9.003	6.611	0.063	104.9	0.000	29.7		0.0	1.500	0	225	Pipe/Conduit	<u> </u>
10.000	21.742	0.473	46.0	0.000	9.9		0.0	1.500	0	150	Pipe/Conduit	<del>.</del>
10.001	17.401	0.378	46.0	0.000	0.0		0.0	1.500	0	150	Pipe/Conduit	- Ē
10.002	12.648	0.275	46.0	0.000	0.0		0.0	1.500	0	150	Pipe/Conduit	Ť
9.004	7.170	0.065	110.3	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	6
9.005	16.330	0.148	110.3	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	<b>6</b>
9.006	61.967	0.553	112.1	0.000	6.6		0.0	1.500	0	225	Pipe/Conduit	Ť
11 000	10 700	0 000	20.0	0 000	6 6		0.0	1 500		1 5 0		
11.000	12.798	0.328	39.0	0.000	6.6		0.0	1.500	0	150	Pipe/Conduit	Ö
11.001	36.756	0.525	70.0	0.000	19.8		0.0	1.500	0	150	Pipe/Conduit	5
9.007	23.144	0.210	110.0	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	ď

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
6.007	62.838	0.000	0.0	132.0	0.6	60	0.75	1.04	41.3	6.3	
6.008	62.647	0.000	0.0	132.0	0.6	60	0.75	1.04	41.2	6.3	
6.009	62.596	0.000	0.0	132.0	0.6	60	0.75	1.04	41.3	6.3	
9.000	69.000	0.000	0.0	56.1	0.4	53	0.75	0.88	15.6	4.1	
9.001	68.518	0.000	0.0	56.1	0.4	44	0.75	1.25	49.6	4.1	
9.002	68.184	0.000	0.0	62.7	0.4	40	0.91	1.60	63.7	4.4	
9.003	67.775	0.000	0.0	92.4	0.5	52	0.75	1.12	44.5	5.3	
10.000	67.350	0.000	0.0	9.9	0.2	28	0.75	1.29	22.9	1.7	
10.001	66.877	0.000	0.0	9.9	0.2	28	0.75	1.29	22.9	1.7	
10.002	66.499	0.000	0.0	9.9	0.2	28	0.75	1.29	22.9	1.7	
9.004	66.149	0.000	0.0	102.3	0.5	54	0.75	1.09	43.4	5.6	
9.005	66.084	0.000	0.0	102.3	0.5	54	0.75	1.09	43.4	5.6	
9.006	64.500	0.000	0.0	108.9	0.5	56	0.75	1.08	43.1	5.7	
11.000	66.850	0.000	0.0	6.6	0.1	25	0.75	1.41	24.8	1.4	
11.001	66.522	0.000	0.0	26.4	0.3	40	0.75	1.05	18.5	2.8	
9.007	63.947	0.000	0.0	135.3	0.6	58	0.78	1.09	43.5	6.4	
			@19	82-2018	Tnnovv	70					
			ST)	02 2010	T1110 A A 7						
DBFL Consulting Engineers		-	Page 5								
-----------------------------------------------------	-----------------------------------	------------------------------	--------------------	--	--	--	--				
Ormond House											
Upper Ormond Quay											
Dublin 7			Mirro								
Date 16/10/2019 09:51	Designed by butlerj										
File FS_1.mdx	Checked by	Diamage									
Innovyze	Network 2018.1										
Network	Design Table for FS	_1									
PN Length Fall Slope Area Un. (m) (m) (1:X) (ha)	ts Base k H Flow (l/s) (mm) Si	YD DIA Section Ty CT (mm)	ype Auto Design								
12 000 20 898 0 279 74 9 0 000 3	0 0 1 500	o 225 Pine/Condu	11i+ <b>A</b>								

12.000	20.000	0.2/5	/ 1 • 2	0.000	55.0	0.0 1.000	0	220	r pc/ condurc	••••
12.001	51.171	0.502	101.9	0.000	46.2	0.0 1.500	0	225	Pipe/Conduit	÷
12.002	19.073	0.166	114.9	0.000	33.0	0.0 1.500	0	225	Pipe/Conduit	÷
12.003	46.002	0.368	125.0	0.000	26.4	0.0 1.500	0	225	Pipe/Conduit	Ē
12.004	7.921	0.063	125.7	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	ř
12.005	12.163	0.097	125.0	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	ě
9.008	16.918	0.112	151.1	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	<b>ef</b>
13.000	16.357	0.419	39.0	0.000	6.6	0.0 1.500	0	150	Pipe/Conduit	<u>a</u>
13.001	22.413	0.423	53.0	0.000	6.6	0.0 1.500	0	150	Pipe/Conduit	ě
13.002	32.915	0.387	85.1	0.000	26.4	0.0 1.500	0	150	Pipe/Conduit	ě
13.003	16.584	0.188	88.2	0.000	23.1	0.0 1.500	0	225	Pipe/Conduit	ě
13.004	8.107	0.092	88.1	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	ě
13.005	8.738	0.099	88.3	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	ě
13.006	14.832	0.151	98.2	0.000	13.2	0.0 1.500	0	225	Pipe/Conduit	ě
13.007	14.425	0.147	98.1	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	ě
13.008	39.321	0.777	50.6	0.000	23.1	0.0 1.500	0	225	Pipe/Conduit	ě
13.009	29.432	0.655	44.9	0.000	26.4	0.0 1.500	0	225	Pipe/Conduit	ě
13.010	23.059	1.000	23.1	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	ě
9.009	20.568	0.108	190.4	0.000	0.0	0.0 1.500	0	225	Pipe/Conduit	<b>B</b>
										-

#### Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ E Flow	Base (1/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
12.000	63.955	0.000		0.0	39.6	0.3	39	0.75	1.33	52.8	3.5	
12.001	63.676	0.000		0.0	85.8	0.5	51	0.75	1.14	45.2	5.1	
12.002	63.174	0.000		0.0	118.8	0.5	57	0.75	1.07	42.6	6.0	
12.003	63.008	0.000		0.0	145.2	0.6	61	0.75	1.03	40.8	6.6	
12.004	62.640	0.000		0.0	145.2	0.6	62	0.75	1.02	40.7	6.6	
12.005	62.577	0.000		0.0	145.2	0.6	61	0.75	1.03	40.8	6.6	
9.008	62.480	0.000		0.0	280.5	0.8	76	0.77	0.93	37.1	9.2	
13.000	68.570	0.000		0.0	6.6	0.1	25	0.75	1.40	24.8	1.4	
13.001	68.151	0.000		0.0	13.2	0.2	31	0.75	1.21	21.3	2.0	
13.002	67.728	0.000		0.0	39.6	0.3	46	0.75	0.95	16.8	3.5	
13.003	67.266	0.000		0.0	62.7	0.4	46	0.76	1.22	48.6	4.4	
13.004	67.078	0.000		0.0	62.7	0.4	45	0.75	1.22	48.6	4.4	
13.005	66.986	0.000		0.0	62.7	0.4	46	0.76	1.22	48.6	4.4	
13.006	66.887	0.000		0.0	75.9	0.4	49	0.75	1.16	46.1	4.8	
13.007	66.736	0.000		0.0	75.9	0.4	49	0.75	1.16	46.1	4.8	
13.008	66.589	0.000		0.0	99.0	0.5	45	0.98	1.62	64.2	5.5	
13.009	65.812	0.000		0.0	125.4	0.6	46	1.06	1.72	68.2	6.2	
13.010	65.157	0.000		0.0	125.4	0.6	39	1.34	2.40	95.3	6.2	
9.009	62.368	0.000		0.0	405.9	1.0	90	0.75	0.83	33.0	11.1	
				©19	82-2018	Innovyz	ze					

DBFL Consulting Engineers		Page 6
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 16/10/2019 09:51	Designed by butlerj	
File FS_1.mdx	Checked by	Diamade
Innovyze	Network 2018.1	1

#### <u>Network Design Table for FS_1</u>

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	Ba Flow	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
9.010	72.721	0.373	195.0	0.000	39.6		0.0	1.500	0	225	Pipe/Conduit	æ
9.011	11.263	0.058	194.2	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	Ť
14.000	17.280	0.580	29.8	0.000	19.8		0.0	1.500	0	150	Pipe/Conduit	ð
14.001	19.625	0.600	32.7	0.000	26.4		0.0	1.500	0	150	Pipe/Conduit	- Ē
14.002	7.853	0.250	31.4	0.000	0.0		0.0	1.500	0	150	Pipe/Conduit	- The second sec
14.003	7.990	0.450	17.8	0.000	0.0		0.0	1.500	0	150	Pipe/Conduit	- The second sec
14.004	14.060	0.900	15.6	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- Ē
14.005	6.297	0.400	15.7	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	ď
9.012	56.847	0.284	200.2	0.000	26.4		0.0	1.500	0	225	Pipe/Conduit	æ
9.013	42.264	0.214	197.9	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	ð
1.019	26.511	0.133	199.3	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	æ
1.020	16.955	0.085	199.5	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- F
1.021	31.175	0.156	199.8	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- F
1.022	51.028	0.255	200.1	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	ř
1.023	6.660	0.033	201.8	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	Ť

<u>Network Results Table</u>

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
9.010	62.260	0.000	0.0	445.5	1.1	93	0.75	0.82	32.6	11.6
9.011	61.887	0.000	0.0	445.5	1.1	93	0.75	0.82	32.7	11.6
14.000	66.730	0.000	0.0	19.8	0.2	30	0.98	1.61	28.4	2.4
14.001	66.150	0.000	0.0	46.2	0.3	38	1.07	1.54	27.1	3.7
14.002	65.550	0.000	0.0	46.2	0.3	37	1.09	1.57	27.7	3.7
14.003	65.300	0.000	0.0	46.2	0.3	32	1.33	2.09	36.9	3.7
14.004	64.775	0.000	0.0	46.2	0.3	28	1.32	2.91	115.8	3.7
14.005	63.875	0.000	0.0	46.2	0.3	28	1.32	2.90	115.4	3.7
9.012	61.829	0.000	0.0	518.1	1.1	97	0.76	0.81	32.2	12.5
9.013	61.545	0.000	0.0	518.1	1.1	97	0.76	0.81	32.4	12.5
1.019	61.331	0.000	0.0	1006.5	1.6	118	0.83	0.81	32.3	17.4
1.020	61.198	0.000	0.0	1006.5	1.6	118	0.83	0.81	32.3	17.4
1.021	61.113	0.000	0.0	1006.5	1.6	118	0.83	0.81	32.2	17.4
1.022	60.957	0.000	0.0	1006.5	1.6	118	0.83	0.81	32.2	17.4
1.023	60.702	0.000	0.0	1006.5	1.6	118	0.82	0.81	32.1	17.4

#### Free Flowing Outfall Details for FS_1

1.023 0 0.000 60.669 0.000 0 0	Outfall Pipe Number	Outfall C. Name	Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
	1.023	0	0.000	60.669	0.000	0	0

DBFL Consulting Engineers		Page 1
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 16/10/2019 09:53	Designed by butlerj	
File FS_2.mdx	Checked by	Diamage
Innovyze	Network 2018.1	1

#### FOUL SEWERAGE DESIGN

#### Design Criteria for FS_2

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)10Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Calculation MethodEN 752Maximum Backdrop Height (m)2.000Frequency Factor0.50Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

#### Network Design Table for FS_2

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	30.170	0.262	115.2	0.000	115.5		0.0	1.500	0	225	Pipe/Conduit	<del>0</del>
1.001	41.872	0.349	120.0	0.000	9.9		0.0	1.500	0	225	Pipe/Conduit	- And
1.002	21.383	0.178	120.1	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	Ť
2.000	33.892	0.527	64.3	0.000	56.1		0.0	1.500	0	225	Pipe/Conduit	ď
1.003	17.541	0.125	140.3	0.000	6.6		0.0	1.500	0	225	Pipe/Conduit	ď
1.004	9.112	0.065	140.2	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- F
1.005	25.424	0.169	150.4	0.000	23.2		0.0	1.500	0	225	Pipe/Conduit	- F
1.006	30.467	0.203	150.1	0.000	16.5		0.0	1.500	0	225	Pipe/Conduit	Ť
3.000	22.893	0.432	53.0	0.000	13.2		0.0	1.500	0	150	Pipe/Conduit	<del>0</del>
3.001	6.546	0.124	53.0	0.000	0.0		0.0	1.500	0	150	Pipe/Conduit	6
3.002	6.849	0.129	53.0	0.000	0.0		0.0	1.500	0	150	Pipe/Conduit	<u> </u>

#### Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (1/s)	
1.000	63.629	0.000	0.0	115.5	0.5	57	0.75	1.07	42.5	5.9	
1.001	63.367	0.000	0.0	125.4	0.6	58	0.75	1.05	41.7	6.2	
1.002	63.018	0.000	0.0	125.4	0.6	58	0.75	1.05	41.6	6.2	
2.000	63.492	0.000	0.0	56.1	0.4	41	0.83	1.43	57.0	4.1	
1.003	62.240	0.000	0.0	188.1	0.7	68	0.75	0.97	38.5	7.5	
1.004	62.115	0.000	0.0	188.1	0.7	68	0.75	0.97	38.5	7.5	
1.005	62.050	0.000	0.0	211.3	0.7	71	0.75	0.93	37.2	8.0	
1.006	61.881	0.000	0.0	227.8	0.8	72	0.75	0.94	37.2	8.3	
3.000	63.463	0.000	0.0	13.2	0.2	31	0.75	1.21	21.3	2.0	
3.001	63.031	0.000	0.0	13.2	0.2	31	0.75	1.21	21.3	2.0	
3.002	62.907	0.000	0.0	13.2	0.2	31	0.75	1.21	21.3	2.0	
			©19	82-2018	3 Innovy	ze					

DBFL Consulting Engineers										Pag	ge 2		
Ormond	House												
Upper O	rmond	Quay											
Dublin	7											N/	icro
Date 16	/10/20	19 09	:53		Ι	esig	ned by	y but	lerj				
File FS	2.mdx				0	Checked by						U	allidye
Innovyz	e				Network 2018.1								
PN	Length	Fall	Slope	<u>Netwo</u> Area	<u>rk De</u> Units	<u>sign</u> Ba	Table	e for k	FS_2 hyd	DIA	Section	Туре	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SECT	(mm)			Design
3.003 3.004	29.615 7.277	0.423 0.074	70.0 98.3	0.000 0.000	13.2 0.0		0.0	1.500 1.500	0	150 150	Pipe/Con Pipe/Con	duit duit	6 6
1.007	20.097	0.186	108.0	0.000	0.0		0.0	1.500	0	225	Pipe/Con	duit	ď
1.008	21.784	0.136	160.0	0.000	9.9		0.0	1.500	0	225	Pipe/Con	duit	ď
1.009	26.281	0.159	165.0	0.000	26.4		0.0	1.500	0	225	Pipe/Con	duit	ď
1 010	28 115	0.165	170.0	0.000	13.2		0.0	1.500	0	225	Pipe/Con	duit.	<u></u>

- <b>6</b>	Pipe/Conduit	o 225	1.500	0.0	13.2	0.000	1/0.0	0.165	28.115	1.010
ď	Pipe/Conduit	o 225	1.500	0.0	0.0	0.000	170.0	0.049	8.410	1.011
ð	Pipe/Conduit	o 150	1.500	0.0	33.0	0.000	77.0	0.858	66.036	4.000
ď	Pipe/Conduit Pipe/Conduit	o 225	1.500	0.0	20.4	0.000	91.8	0.585	12.491	4.001
ď	Pipe/Conduit	o 225	1.500	0.0	0.0	0.000	180.0	0.144	25.918	1.012
ð	Pipe/Conduit	o 150	1.500	0.0	26.4	0.000	40.0	1.526	61.023	5.000
e f	Pipe/Conduit Pipe/Conduit	o 225 o 225	1.500 1.500	0.0	0.0 6.6	0.000	188.0 188.0	0.094 0.133	17.726 25.058	1.013 1.014
ð	Pipe/Conduit	o 150	1.500	0.0	33.0	0.000	75.3	1.135	85.442	6.000
6	Pipe/Conduit	o 150	1.500	0.0	0.0	0.000	76.8	0.085	6.526	6.001

#### <u>Network Results Table</u>

(m) (ha) Flow $(1/s)$ (1/s) (mm) (m/s) (m/s) (1/s) (1/s)	s)
3.003 62.250 0.000 0.0 26.4 0.3 40 0.75 1.05 18.5 2	.8
3.004 61.827 0.000 0.0 26.4 0.3 43 0.67 0.88 15.6 2	.8
1.007 61.678 0.000 0.0 254.2 0.8 68 0.86 1.10 43.9 8	.8
1.008 61.492 0.000 0.0 264.1 0.8 76 0.75 0.91 36.0 8	.9
1.009 61.356 0.000 0.0 290.5 0.9 79 0.75 0.89 35.5 9	.4
1.010 61.197 0.000 0.0 303.7 0.9 80 0.75 0.88 35.0 9	.6
1.01161.0310.0000.0303.70.9800.750.8835.09	.6
4.000 63.478 0.000 0.0 33.0 0.3 43 0.75 1.00 17.7 3	.2
4.001 62.545 0.000 0.0 59.4 0.4 45 0.75 1.22 48.7 4	.2
4.002 61.962 0.000 0.0 66.0 0.4 47 0.75 1.20 47.6 4	.5
1.012 60.982 0.000 0.0 369.7 1.0 86 0.75 0.85 34.0 10	.6
5.000 63.833 0.000 0.0 26.4 0.3 34 0.92 1.39 24.5 2	.8
1.013 60.838 0.000 0.0 396.1 1.0 89 0.75 0.84 33.2 10	.9
1.014 60.743 0.000 0.0 402.7 1.0 89 0.75 0.84 33.2 11	.0
6.000 <u>63.921</u> 0.000 0.0 33.0 0.3 43 0.76 1.01 17.9 3	.2
6.00162.7860.0000.033.00.3430.751.0017.73	.2
@1982-2018 Innovyze	

DBFL Co	nsulti	ng En	ginee	rs								Pag	je 3
Ormond	House												
Upper O	rmond	Quay											
Dublin	7											Ν./	
Date 16	Date 16/10/2019 09:53 Designed by butleri											iliu	
Filo FG	2 mdv	10 00	••••			Check	ed by	1 2000				Uſ	ainage
T	_2.110					Nul		1 0 1					
Innovyz	e					Netwo	ork 20.	18.1					
				Nationa			m e le 1 e		<b>DQ</b> 0				
<u>Network Design Table for FS_2</u>													
PN	Length	Fall	Slope	Area	Unit	s E	ase	k	HYD	DIA	Section	Туре	Auto
	(m)	(m)	(1:X)	(ha)		Flow	/(1/s)	(mm)	SECT	(mm)			Design
7.000	36.896	0.335	110.0	0.000	105.	6	0.0	1.500	0	225	Pipe/Co	nduit	ð
7.001	6.915	0.098	70.6	0.000	0.	0	0.0	1.500	0	225	Pipe/Co	nduit	Ū.
6 002	5 924	0 047	126 0	0 000	0	0	0 0	1 500	0	225	Pipe/Co	ndui +	•
6 003	39 505	0.047	125.0	0.000	0.	0	0.0	1 500	0	225	Pipe/Co	nduit	T T
6.004	4.816	0.051	94.4	0.000	0.	0	0.0	1.500	0	225	Pipe/Co	nduit.	
0.001	1.010	0.001	51.1	0.000	•••	0	0.0	1.000	Ũ	220	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•
8.000	50.815	0.956	53.2	0.000	33.	0	0.0	1.500	0	150	Pipe/Co	nduit	a
8.001	6.522	0.108	60.4	0.000	13.	2	0.0	1.500	0	225	Pipe/Co	nduit	ř
8.002	45.859	0.573	80.0	0.000	0.	0	0.0	1.500	0	225	Pipe/Co	nduit	
8.003	29.012	0.363	80.0	0.000	Ο.	0	0.0	1.500	0	225	Pipe/Co	nduit	
8.004	20.899	0.237	88.0	0.000	13.	2	0.0	1.500	0	225	Pipe/Co	nduit	Ū,
6.005	6.481	0.045	144.0	0.000	0.	0	0.0	1.500	0	225	Pipe/Co	nduit	_ <b>_</b>
6.006	65.719	0.387	170.0	0.000	105.	6	0.0	1.500	0	225	Pipe/Co	nduit.	, and a second s
6.007	11.351	0.065	175.0	0.000		9	0.0	1.500	0	225	Pipe/Co	nduit	<u>~</u>
6.008	28.474	0.163	175.0	0.000	19.	8	0.0	1.500	0	225	Pipe/Co	nduit	<u> </u>
6.009	32.416	0.185	175.0	0.000	0.	0	0.0	1.500	0	225	Pipe/Co	nduit	Å.
6.010	22.966	0.131	175.0	0.000	0.	0	0.0	1.500	0	225	Pipe/Co	ndui+	Š.
6.011	18,167	0.101	179.9	0.000	13	2	0.0	1.500	0	225	Pipe/Co	ndui+	<u>~</u>
6.012	10.600	0.059	179.7	0.000	0.	0	0.0	1.500	0	225	Pipe/Con	nduit	Å
									-	-	1 - ,		•
				N	etwo	ork Re	sults	Table	<u>)</u>				
1			_		-			_					-
E	יN US∕	ILΣ	Area	Σ Base	) Σ	Units	Add F	LOW P.1	Dep P.	Vel	Vel Ca	ар F	LOW

EN	05/11	2 Area	2 base	Z UNITES	Add FIOW	r.bep	F.VET	VET	cap	T TOW	
	(m)	(ha)	Flow (l/s)		(l/s)	(mm)	(m/s)	(m/s)	(l/s)	(l/s)	
7.000	63.855	0.000	0.0	105.6	0.5	55	0.75	1.09	43.5	5.7	
7.001	63.520	0.000	0.0	105.6	0.5	49	0.88	1.37	54.4	5.7	
6 002	62 626	0 000	0 0	138 6	06	61	0 75	1 02	40 6	65	
6 003	62 579	0 000	0.0	138 6	0.6	61	0 75	1 03	40.8	6.5	
6 004	62 263	0 000	0.0	138 6	0.6	56	0.83	1 18	47 0	65	
0.001	02.200	0.000	0.0	100.0	0.0	50	0.05	1.10	17.0	0.0	
8.000	63.657	0.000	0.0	33.0	0.3	39	0.86	1.20	21.3	3.2	
8.001	62.626	0.000	0.0	46.2	0.3	39	0.82	1.48	58.8	3.7	
8.002	62.518	0.000	0.0	46.2	0.3	41	0.75	1.28	51.1	3.7	
8.003	61.945	0.000	0.0	46.2	0.3	41	0.75	1.28	51.1	3.7	
8.004	61.582	0.000	0.0	59.4	0.4	45	0.75	1.22	48.7	4.2	
6.005	60.900	0.000	0.0	198.0	0.7	69	0.75	0.96	38.0	7.7	
6.006	60.855	0.000	0.0	303.6	0.9	80	0.75	0.88	35.0	9.6	
6.007	60.468	0.000	0.0	313.5	0.9	82	0.75	0.87	34.5	9.7	
6.008	60.404	0.000	0.0	333.3	0.9	83	0.75	0.87	34.5	10.0	
6.009	60.241	0.000	0.0	333.3	0.9	83	0.75	0.87	34.5	10.0	
6.010	60.056	0.000	0.0	333.3	0.9	83	0.75	0.87	34.5	10.0	
6.011	59.924	0.000	0.0	346.5	0.9	85	0.75	0.85	34.0	10.2	
6.012	59.823	0.000	0.0	346.5	0.9	85	0.75	0.86	34.0	10.2	
			©19	982-2018	Innovy	ze					

DBFL Consulting Engineers		Page 4
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 16/10/2019 09:53	Designed by butlerj	
File FS_2.mdx	Checked by	Diamage
Innovyze	Network 2018.1	L

#### Network Design Table for FS_2

PN	Length (m)	Fall (m)	Slope	Area (ha)	Units	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto
	()	(/	(,	(1102)			(=/ =/	()		()		200-y
1.015	25.267	0.126	200.0	0.000	9.9		0.0	1.500	0	225	Pipe/Conduit	_
1.016	12.808	0.064	200.0	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	<u> </u>
1.017	17.444	0.087	200.0	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	, second
1.018	36.996	0.185	200.0	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- A
1.019	25.536	0.128	200.0	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	Ť
9.000	35.427	0.521	68.0	0.000	23.1		0.0	1.500	0	150	Pipe/Conduit	<del>0</del>
10 000	21 062	0 214	60.0	0 000	00 F		0 0	1 500	~	225	Dino (Conduit	~
10.000	21.902	0.314	69.9	0.000	82.5		0.0	1.500	0	225	Pipe/Conduit	<b>Ö</b>
10.001	6.345	0.091	69.7	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	, di
10.002	/.0/1	0.146	48.4	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	ల్
9.001	5.431	0.049	110.8	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	<b>.</b>
9.002	38.907	0.354	109.9	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	
9.003	37.483	0.288	130.1	0.000	49.5		0.0	1.500	0	225	Pipe/Conduit	, second
9.004	7.908	0.061	129.6	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	, second
9.005	11.241	0.083	135.4	0.000	19.8		0.0	1.500	0	225	Pipe/Conduit	, second
9.006	7.603	0.056	135.8	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	- A
9.007	9.626	0.071	135.6	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	
9.008	65.597	0.452	145.1	0.000	33.0		0.0	1.500	0	225	Pipe/Conduit	ř

#### Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.015	59.764	0.000	0.0	759.1	1.4	108	0.80	0.81	32.2	15.2	
1.016	59.638	0.000	0.0	759.1	1.4	108	0.80	0.81	32.2	15.2	
1.017	59.574	0.000	0.0	759.1	1.4	108	0.80	0.81	32.2	15.2	
1.018	59.487	0.000	0.0	759.1	1.4	108	0.80	0.81	32.2	15.2	
1.019	59.302	0.000	0.0	759.1	1.4	108	0.80	0.81	32.2	15.2	
9.000	63.398	0.000	0.0	23.1	0.2	38	0.75	1.06	18.8	2.6	
10.000	63.000	0.000	0.0	82.5	0.5	46	0.85	1.37	54.6	5.0	
10.001	62.686	0.000	0.0	82.5	0.5	46	0.86	1.38	54.7	5.0	
10.002	62.595	0.000	0.0	82.5	0.5	42	0.97	1.65	65.7	5.0	
9.001	62.449	0.000	0.0	105.6	0.5	55	0.75	1.09	43.3	5.7	
9.002	62.400	0.000	0.0	105.6	0.5	55	0.76	1.09	43.5	5.7	
9.003	62.046	0.000	0.0	155.1	0.6	63	0.75	1.01	40.0	6.8	
9.004	61.758	0.000	0.0	155.1	0.6	63	0.75	1.01	40.1	6.8	
9.005	61.697	0.000	0.0	174.9	0.7	66	0.75	0.99	39.2	7.3	
9.006	61.614	0.000	0.0	174.9	0.7	66	0.75	0.98	39.1	7.3	
9.007	61.558	0.000	0.0	174.9	0.7	66	0.75	0.99	39.2	7.3	
9.008	61.487	0.000	0.0	207.9	0.7	70	0.75	0.95	37.9	7.9	
			©19	82-2018	Innovyz	ze					

	iltin	g Eng	gineeı	rs								Pa	age 5
rmond Hou	ise												
pper Ormo	∍nd Q	uay											
ublin /		0 0 0	F 2			Decis	] ].	1	1			N	<i>l</i> icro
vate 16/10 vilo Eg 2	mdv	9 09:	:53			Designed by butler;							
nnowyze						Networ	-k 201	18 1					J
						NCCWOI	. K 20.	10.1					
				Networ	ck D	esign	Table	e for	FS_	2			
				_		_		-				_	
PN Le	ngth (m)	Fall (m)	Slope (1:X)	Area (ha)	Unit	s Ba Flow	ase (l/s)	k (mm)	HY SEC	D DIA CT (mm)	Sect	lon Typ	De Auto Design
11.000 21	.395	0.405	52.8	0.000	13.	2	0.0	1.50	0	0 150	Pipe,	'Condui	t 🔒
0 000 10	440	0 070	140.0	0 000	0	0	0 0	1 50	0	- 005	Dian		
9.009 10 9.010 18	.263	0.122	149.3	0.000	0.	. 0	0.0	1.50	0	o 225 o 225	Pipe, Pipe,	'Condui 'Condui	.t 💣
12.000 9	. 950	0.136	73.2	0.000	29.	7	0.0	1.50	0	0 150	Pipe	Condui	+ <b>A</b>
9 011 22	874	0 1/3	160 0	0 000	0	0	0.0	1 50	0	0 225	Pipe	Condui	+ _0
J.011 22	.0/4	0.145	100.0	0.000	0.	. 0	0.0	1.00	0	0 220	i i the	Condui	
1.020 24	.419	0.122	200.0	0.000	0.	0	0.0	1.50	0	o 225	Pipe,	'Condui	t 💣
				Ne	etwo	rk Res	ults	Tabl	<u>e</u>				
			_		_				_			_	
PN	US/1 (m)	LΣ2 ) (1	Area ha) F	Σ Base low (l/	e) (s)	Units	Add F	low P ;)	.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
11.000	62.5	80 0	.000	C	0.0	13.2		0.2	31	0.75	1.21	21.3	2.0
9.009	61.0	35 0	.000	C	0.0	221.1		0.7	72	0.75	0.94	37.3	8.2
9.010	60.9	65 0	.000	C	0.0	221.1		0.7	72	0.75	0.94	37.3	8.2
12.000	62.3	80 0	.000	C	0.0	29.7		0.3	41	0.76	1.02	18.1	3.0
9.011	60.8	43 0	.000	C	0.0	250.8		0.8	75	0.75	0.91	36.0	8.7
1.020	59.1	74 0	.000	C	0.0	1009.9		1.6	118	0.83	0.81	32.2	17.5
			<u>Free</u>	Flowi	ing	Outfal	l Det	ails	for	FS_2			
		011+	f-11	Out fol		Torrol	TTO		Min	וח	w		
		Pipe 1	Number	Name		(m)	(m)	I	. Lev (m)	el (mm	) (mm)		
			1.020	FZ	70	63.700	59.	052	0.0	00	0 0	1	

©1982-2018 Innovyze

Appendix G

### Ground Investigation Information



Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

## **Ground Investigations Ireland**

## **Branganstown Kilcock**

# **Ground Investigation Report**

### DOCUMENT CONTROL SHEET

Project Title	Branganstown Kilcock
Engineer	DBFL
Project No	8559-03-19
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Draft	S Kealy	F McNamara	F McNamara	Dublin	29 April 2019



Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

#### CONTENTS

1.0	Preamble
2.0	Overview
2.1.	Background3
2.2.	Purpose and Scope3
3.0	Subsurface Exploration3
3.1.	General3
3.2.	Trial Pits3
3.3.	Soakaway Testing4
4.0	Ground Conditions
4.1.	General5
4.2.	Groundwater6
5.0	Recommendations & Conclusions7
5.1.	General7
5.2.	Foundations7
5.3.	Excavations7
5.4.	Soakaway Design7

#### APPENDICES

Appendix 1	Site Location Plan
Appendix 2	<b>Trial Pit Records</b>
Appendix 3	Soakaway Records

#### 1.0 Preamble

On the instructions of DBFL Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., in March 209 at the site of the proposed residential development in Branganstown, Kilcock Co. Kildare.

#### 2.0 Overview

#### 2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently greenfield and is situated in Branganstown, Co. Kildare. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

#### 2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 9 No. Trial Pits to a maximum depth of 3.0m BGL
- Carry out 7 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Report with recommendations

#### 3.0 Subsurface Exploration

#### 3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

#### 3.2. Trial Pits

The trial pits were excavated using a 3CX excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by an Engineering

Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

#### 3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

#### 4.0 Ground Conditions

#### 4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Granular Deposits

**TOPSOIL:** Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.3m BGL.

**MADE GROUND:** Made Ground deposits were encountered beneath the Topsoil in TP06 and SA07 and was present to a maximum depth of between 0.45m BGL. These deposits were described generally as brown sandy slightly gravelly CLAY or a black slightly sandy gravelly clayey peat with rare fragments of brick.

**COHESIVE DEPOSITS:** Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits varied across the site but typically increased with depth in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

**GRANULAR DEPOSITS:** The granular deposits were encountered at the base of the cohesive deposits and were typically described as *Grey brown clayey sandy sub rounded to sub angular fine to coarse GRAVEL with occasional cobbles and rare boulders*. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs.

It should be noted that many of the trial pits where granular deposits or groundwater were encountered, experienced instability indicating that the material is loose or medium dense. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs.

#### 4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors.

#### 5.0 Recommendations & Conclusions

#### 5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

#### 5.2. Foundations

Due to the presence of the granular material across the site we would recommended carrying out a sequence of dynamic probing to determine an allowable bearing capacity.

#### 5.3. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

#### 5.4. Soakaway Design

An Infiltration rate of  $4.353 \times 10^{-4}$  m/s was calculated for the soakaway at the location of SA05. At the locations of SA01, SA02, SA03, SA04, SA06 and SA07 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

### **APPENDIX 1** - Site Location Plan



690000.000

### APPENDIX 2 - Trial Pit Records

	Grou	nd In	vestigations www.gii.ie	Ireland	Ltd	Site Branganstown, Kilcock		Trial Pit Number SA01
Machine : J	CB 3CX rial Pit	Dimensi 2.0m X	<b>ons</b> 0.35m X 2.65m	Ground	Level (mOD)	Client		Job Number 8559-03-19
		Location	1	Dates 2	5/03/2019	Project Contractor		<b>Sheet</b> 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	Legend S	
1.30 Plan .	в				(0.35) (0.45) (0.45) (0.45) (0.80 (1.85) (1.85) (1.85) (1.85)	Brown slightly sandy slight rootlets.         Firm brown slightly sandy occasional sub-angular to         Firm to stiff brown mottled with rare sub-angular to stiff brown mottled with rare sub-angular to stiff brown mottled and the sub-angular to stiff brown and the sub-angular to stiff brown mottled at 2.65m         Trial pit terminated due t         Complete at 2.65m         Remarks         Trial pit stable.         Soakaway completed in trial soakaway backfulled on completed in trial	tly gravelly TOPSOIL with gravelly gravelly CLAY with sub-rounded cobbles.	
· ·						Soakaway backnilled on con	ipieteion.	
		•			· · ·			
· ·				•	· ·   s	Scale (approx)	Logged By	Figure No.
						1:25	Tmcl	8559-03-19.SA01

Ground Investigations Ireland Ltd						Ltd	Site Branganstown, Kilcock	Site Branganstown, Kilcock			
Machine : J Method : T	CB 3CX Trial Pit	Dimensi 2.20m X	ons ( 0.35m X 3.00m		Ground	Level (mOD)	Client		Job Number 8559-03-1	Job Number 8559-03-19	
		Location	1		Dates 25	5/03/2019	Project Contractor GII		<b>Sheet</b> 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	D	Legend	Water		
						(0.20) 0.20 (0.45) 0.65	Brown slightly sandy slight rootlets. Firm light greyish brown sl CLAY. Firm to stiff grey mottled b with occasional sub-angul	ily gravelly TOPSOIL with gra ightly sandy slightly gravelly rown slightly sandy gravelly ar to sub-rounded cobbles.	ASS		
						(1.05) (1.05) (0.20) (0.20) (0.20)	Stiff brown/dark grey sligh occasional cobbles. Stiff greyish brown slightly	tly sandy gravelly CLAY with	6 6 6 6 6 6 6 6 6 6 6 6 6 6		
						(1.10)	occasional sub-rounded c	DDDIes.			
							Complete at 3.00m		<u>6 - 7 4 -</u>		
Plan					•	F	Remarks	od			
							Trial pit stable. Soakaway completed in trial Soakaway backfilled on con	pit. pleteion.			
					· ·						
· ·	· ·		· ·		• •	· · ·					
					<b>.</b> .	s	scale (approx) 1:25	Logged By Tmcl	Figure No. 8559-03-19.SA0		

Machine : JCB 3CX Method : Trial Pit Depth (m) Sample / Tests	Dimens Locatio Water Depth (m)	n Field Records	Ground Dates 25	Level (mOD)	Client Proiect Contractor		Job Number 8559-03-19
Depth (m) Sample / Tests	Locatio Water Depth (m)	n Field Records	Dates 25	5/03/2019	Project Contractor	Client	
Depth (m) Sample / Tests	Water Depth (m)	Tests Water Depth (m) Field Records			GII		Sheet 1/1
			(mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
Plan       .       .         .       .       .         .       .       .         .       .       .         .       .       .         .       .       .         .       .       .         .       .       .         .       .       .         .       .       .		FI(1) at 2.10m.		(Thickness) (0.25) 0.25 0.25 0.25 0.25 0.20 0.40) 0.90 0.90 0.90 0.40) 0.90 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.2000 0.200 0.200 0.000 0.000 0.000 0.0	Brown slightly sandy slight rootlets. Soft to firm light greyish br gravelly CLAY. Firm to stiff grey mottled b with rare sub-angular to su Grey gravelly clayey fine to Grey sandy very gravelly ( to sub-rounded cobbles. Grey sandy sub-angular to GRAVEL with occasional s Trial pit terminated due to trial pit sidewall collapse Complete at 2.20m Remarks Groundwater encountered a Trial pit spalling from 1.0m E Trial pit backfilled on complet	t 2.10m BGL - Fast Ingress.	cLAY
· · · · ·		· · ·	• •	· · · ·	cale (approx)	Logged By	Figure No.

GROUND INVESTIGATIONS IRELAND	Grou	ind In	vestig	ations I	Site Branganstown, Kilcock				
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.90m	<b>ions</b> X 0.35m X 2	.20m	Ground	Level (mOD)	Client		Job Number 8559-03-19
		Location			Dates 25/03/2019		Project Contractor Gil		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fiel	d Records	Level (mOD)	Depth (m) (Thickness)	) D	escription	Legend Safe
Plan . 		· · · · · · · · · · · · · · · · · · ·	SS(1) at 2.	20m. 20m. 		(0.25) (0.75) (0.75) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25)	Brown slightly sandy sligh rootlets. Soft to firm light greyish br gravelly CLAY with rare su Dark grey slightly sandy w coarse GRAVEL with occa Trial pit terminated due t Complete at 2.25m Remarks Groundwater encountered a Trial pit sidewalls spalling be Soakaway completed in tria Soakaway backfilled on con	tly gravelly TOPSOIL with gr own slightly sandy slightly ib-angular cobbles.	ass 6 10 4 6 10 4 6 10 4 6 10 4 10
· ·	· ·		•	· ·	•	· · ·	Scale (approx)	Logged By	Figure No.
1							1.20	i i i i i i i i i i i i i i i i i i i	0009-00-19.5A03

GROUND INVESTIGATIONS IRELAND	Grou	nd In	vestigations www.gii.ie	Site Branganstown, Kilcock	Trial Pit Number <b>TP04</b>			
Machine : J Method : T	CB 3CX rial Pit	Dimens	ions X 0.50m X 2.00m	Ground	Level (mOD)	Client		Job Number 8559-03-19
		Locatio	n	Dates 25	5/03/2019	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	s Level (mOD)	Depth (m) (Thickness)	) Description		Legend Safe
0.40 1.50	в		MI(1) at 1.80m, rose t 1.20m in 20 mins.	10	(0.25) 0.25 (0.25) 0.50 (0.40) (0.25) 1.15 2.00 2.00	Brown slightly sandy slight rootlets. Soft to firm light brown slig Soft to firm grey mottled bi with occasional cobbles. Dark grey sandy very clay coarse GRAVEL with freque cobbles. Grey very sandy slightly cl to coarse GRAVEL with free cobbles. Trial pit terminated due t Complete at 2.00m	the gravelly TOPSOIL with gravelly sandy slightly gravelly C rown slightly sandy gravelly of ey sub-angular to rounded fi rent sub-rounded to rounded ayey sub-angular to rounded equent sub-rounded to rounded to rounded to rounded to sidewalls collapsing.	ass LAY. CLAY. CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY
						Groundwater encountered a Trial pit sidewalls spalling be Trial pit backfilled on comple	it 1.80m BGL - Medium Ingre slow 1.0m BGL. etion.	255.
				. <u>.</u> .				
					 S	cale (approx)	Logged By Tmcl	Figure No. 8559-03-19.SA04

	Grou	nd In	vestigations I www.gii.ie	reland	Ltd	Site Branganstown, Kilcock		Trial Pit Number SA04
Machine : J Method : T	CB 3CX rial Pit	Dimensi 1.70m X	ions < 0.35m X 1.10m	Ground	Level (mOD)	Client		Job Number 8559-03-19
		Location	n	Dates	5/03/2019	Project Contractor Gll		<b>Sheet</b> 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
					(0.30) 0.30 (0.20)	Brown slightly sandy sligh rootlets. Firm light brown slightly sa	tly gravelly TOPSOIL with g andy slightly gravelly CLAY.	rass
					0.50	Firm grey mottled brown s CLAY with rare sub-angula	lightly sandy slightly gravell ar to sub-rounded cobbles.	y <u>6 7 7 7</u>
					0.80 - (0.30)	Dark grey slightly sandy ve sub-rounded fine to coarse	ery clayey angular to e GRAVEL.	6 0 0
						Complete at 1.10m		
Plan .					· · ·   '	Remarks No Groundwater encountere	ed.	
		·				Soakaway completed in tria Soakaway backfilled on con	l pit. npleteion.	
				·				
		·						
		·			s	Scale (approx)	Logged By	Figure No.
						1:25	Tmcl	8559-03-19.SA04A

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd					Site Branganstown, Kilcock	Site Branganstown, Kilcock		
Machine : J Method : T	CB 3CX Trial Pit	Dimensio 2.50m X (	<b>ns</b> 0.50m X 2.70m	Ground	Level (mOD)	Client		Job Number 8559-03-19	
		Location		Dates 26	6/03/2019	Project Contractor		<b>Sheet</b> 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe	
1.50	в				(0.30) 0.30 (0.20) 0.50 (2.20) 2.70	Brown slightly sandy sligh rootlets. Firm brown sandy gravelly Brown slightly clayey very fine to coarse GRAVEL with Trial pit terminated due t Complete at 2.70m	ty gravelly TOPSOIL with g r CLAY with occasional cobb sandy sub-rounded to roun th occasional rounded cobb	rass	
Plan .		·				Remarks No Groundwater encountere Trial nit collansing below 0.5	ed. Sûm		
						Soakaway Test completed in Trial pit backfilled on completed	a trial pit. etion of soakaway test.		
· ·	· ·		· · · ·		· ·				
					s	Scale (approx)	Logged By	Figure No.	
						1:25	Tmcl	8559-03-19.SA05	

	Ground Investigations Ireland Ltd www.gii.ie								-	Trial Pit Number SA06	
Machine : J Method : 7	CB 3CX rial Pit	Dimens 1.90m	<b>ions</b> X 0.35m X 1.20m		Ground	Level (mOD)	Client		8	<b>Job</b> Number 559-03-19	
		Locatio	n		Dates 26	/03/2019	Project Contractor		:	Sheet 1/1	
Depth (m)	Sample / Test	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Description		L	egend Safe	
Plan .	Sample / Tests		Field Rev	cords	(mõĎ)	(Thickness) (Thickness) (0.20) 0.20 0.30) 0.50 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1	Brown slightly sandy slight rootlets.         Black slightly sandy slight         Grey sandy clayey sub-root GRAVEL with rare sub-root         Trial pit terminated above         Complete at 1.20m         Remarks         No Groundwater encounterer	escription tly gravelly TOPSOIL with gr y gravelly clayey PEAT. Inded to rounded fine to coa inded to rounded cobbles. e groundwater.	arse		
			· ·				Soakaway Test completed in Trial pit backfilled on comple	n trial pit. etion of soakaway test.			
· · ·   · · ·	· ·	•	· ·	· ·							
			· ·				cale (approx) 1:25	Logged By Tmcl	Figure N 8559-03	<b>No.</b> 8-19.SA06	

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd						Site Branganstown, Kilcock			Trial Pit Number SA07	
Machine : J Method : T	CB 3CX Trial Pit	Dimens 2.50m	<b>ions</b> X 0.40m X 2.70m	1	Ground	Level (mOD)	Client		:	Job Number 8559-03-19	
		Locatio	n		Dates 26/03/2019		Project Contractor			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	1	Legend X	
						(0.45) 0.45 0.50 (0.80) 1.30 (0.20) 1.50 (1.20) 2.70	MADE GROUND: Brownis gravelly CLAY.	slightly gravelly peaty CLAY, indy slightly gravelly peaty CLAY, indy slightly gravelly silty CL. win slightly sandy slightly gra inded to rounded to rounded re sub-rounded cobbles.	AY.		
Plan .	· ·	•	· ·			F	Remarks	ed			
							Trial pit collapsing below 1.5 Soakaway Test completed ir Trial pit backfilled on comple	om. h trial pit. etion of soakaway test.			
		•									
· ·	· ·		· ·	· ·		•					
							icale (approx)	Logged By Tmcl	<b>Figure</b> 8559-0	<b>No.</b> 03-19.SA07	

# Branganstown, Kilcock – Trial Pit Photographs







SA02





SA03



TP03





SA04




TP04

















TP06





SA07



## **APPENDIX 3** – Soakaway Records

#### SA01 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.0m x 0.35m 2.65m (L x W x D)







#### SA02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.2m x 0.35m 3.0m (L x W x D)

Date	Time	Water level (m bgl)
25/03/2019	0	-1.050
25/03/2019	47	-0.810
25/03/2019	222	-0.710
25/03/2019	283	-0.640
25/03/2019	356	-0.610
25/03/2019	400	-0.600

*Soakaway failed - Pit backfilled				
Start depth	Depth of Pit	Diff	75% full	25%full
1.05	3.000	1.950	1.5375	2.5125





#### SA03 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.9m x 0.35m 2.25m (L x W x D)

Date	Time	Water level (m bgl)
25/03/2019	0	-0.830
25/03/2019	75	-0.930
25/03/2019	161	-0.940
25/03/2019	251	-0.960
25/03/2019	330	-0.980
25/03/2019	365	-0.990

*Soakaway failed - Pit backfilled				
Start depth	Depth of Pit	Diff	75% full	25%full
0.83	2.250	1.420	1.185	1.895





#### SA04 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.7m x 0.35m 1.10m (L x W x D)

Date	Time	Water level (m bgl)	
25/03/2019	0	-0.420	
25/03/2019	47	-0.610	
25/03/2019	142	-0.710	
25/03/2019	196	-0.800	
25/03/2019	286	-0.890	
25/03/2019	362	-0.910	
25/03/2019	406	-0.910	
25/03/2019			
		*Soakaway failed - Pit backfilled	

	Soakaway lalleu - i it backilleu			
Start depth	Depth of Pit	Diff	75% full	25%full
0.42	1.100	0.680	0.59	0.93





#### SA06 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.9m x 0.35m 1.20m (L x W x D)

Date	Time	Water level (m bgl)
26/03/2019	0	-0.550
26/03/2019	15	-0.600
26/03/2019	106	-0.730
26/03/2019	255	-0.830
26/03/2019	315	-0.870

*Soakaway failed - Pit backfilled				
Start depth	Depth of Pit	Diff	75% full	25%full
0.55	1.200	0.650	0.7125	1.0375





#### SA07 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.5m x 0.40m 2.7m (L x W x D)

Date	Time	Water level (m bgl)
26/03/2019	0	-1.680
26/03/2019	74	-1.590
26/03/2019	213	-1.530
26/03/2019	258	-1.510

*Soakaway failed - Pit backfilled				
Start depth	Depth of Pit	Diff	75% full	25%full
1.68	2.700	1.020	1.935	2.445





#### SA03 1st Fill Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m x 0.50m 2.70m (L x W x D)

Date	Time	Water level (m bgl)
26/03/2019	0	-1.600
26/03/2019	1	-1.890
26/03/2019	2.5	-2.090
26/03/2019	3.5	-2.160
26/03/2019	4.5	-2.450

Start depth 1.60	Depth of Pit 2.450		Diff 0.850	75% full 1.8125	25%full 2.2375
Length of pit (m) 2.500	Width of pit (m) 0.500			75-25Ht (m) 0.425	Vp75-25 (m3) 0.53
Tp75-25 (from g	raph) (s)	150		50% Eff Depth 0.425	ap50 (m2) 3.8
f =	9.320E-04	m/s			





#### SA05 2nd Fill Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m x 0.50m 2.35m (L x W x D)

Time	Water level (m bgl)	
0	-1.650	
1	-1.810	
2	-1.910	
3	-2.000	
4	-2.100	
5	-2.200	
6	-2.350	
	Time 0 1 2 3 4 5 6	

Start depth 1.65	Depth of Pit 2.350		Diff 0.700	75% full 1.825	25%full 2.175
Length of pit (m) 2.500	Width of pit (m) 0.500			75-25Ht (m) 0.350	Vp75-25 (m3) 0.44
Tp75-25 (from graph) (s)		191.5		50% Eff Depth	ap50 (m2)
f =	6.820E-04	m/s		0.000	0.00





#### SA05 3rd Fill Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m x 0.50m 2.70m (L x W x D)

Time	Water level (m bgl)		
0	-1.600		
0.5	-1.700		
1	-1.780		
2	-1.880		
3	-1.960		
5	-2.130		
6.5	-2.300		
	Time 0 0.5 1 2 3 5 6.5		

Start depth 1.60	Depth of Pit 2.300		Diff 0.700	75% full 1.775	25%full 2.125
Length of pit (m) 2.500	Width of pit (m) 0.500			75-25Ht (m) 0.350	Vp75-25 (m3) 0.44
Tp75-25 (from graph) (s)		300		50% Eff Depth	ap50 (m2)
f =	4.353E-04	m/s		0.000	0.00





## Appendix H

## **Statement of Design Acceptance**



Brendan Manning Ormond House Upper Ormond Quay Dublin 7

5 November 2019

# Re: Design Submission for Millerstown, Kilcock, Meath (the "Development") (the "Design Submission") / Connection Reference No: CDS19000027

Dear Brendan Manning,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Fionan Ginty Phone: 01 89 25734 Email: fginty@water.ie

Yours sincerely,

M Buye

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan, Maria O'Dwyer, Yvonne Harris Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

#### Appendix A

#### **Document Title & Revision**

- 190009-DBFL-XX-XX-DR-C-3000 Site Services Layout Sheet 1 of 3
- 190009-DBFL-XX-XX-DR-C-3001 Site Services Layout Sheet 2 of 3
- 190009-DBFL-XX-XX-DR-C-3002 Site Services Layout Sheet 3 of 3
- 190009-DBFL-XX-XX-DR-C-3005 Watermain Layout Sheet 1 of 2
- 190009-DBFL-XX-XX-DR-C-3006 Watermain Layout Sheet 2 of 2
- 190009-DBFL-XX-XX-DR-C-3031 Longitudinal Sections Through Foul Sewer Sheet 1 of
- 190009-DBFL-XX-XX-DR-C-3032 Longitudinal Sections Through Foul Sewer Sheet 2 of
- 190009-DBFL-XX-XX-DR-C-3033 Longitudinal Sections Through Foul Sewer Sheet 3 of 6
- 190009-DBFL-XX-XX-DR-C-3034 Longitudinal Sections Through Foul Sewer Sheet 4 of
- 190009-DBFL-XX-XX-DR-C-3035 Longitudinal Sections Through Foul Sewer Sheet 5 of 6
- 190009-DBFL-XX-XX-DR-C-3036 Longitudinal Sections Through Foul Sewer Sheet 6 of 6

#### For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.